

# ₩SLR

## **Natura Impact Statement**

## White Hill Wind Farm Electricity Substation & Electricity Line

## White Hill Wind Limited

Prepared by: SLR Environmental Consulting (Ireland) Ltd Suite 212, Acorn Business Centre, Blackrock, Cork, T12 K7CV

SLR Project No.: 501.065427.00001 Client Reference No: N/A

28 January 2025

Revision: 2

Making Sustainability Happen

| Revision | Date                   | Prepared By      | Checked By           | Authorised By        |  |
|----------|------------------------|------------------|----------------------|----------------------|--|
| 0        | 21 October 2024        | Dr Jonathon Dunn | Dr Andrew<br>Torsney | Dr Andrew<br>Torsney |  |
| 1        | 29 October 2024        | Dr Jonathon Dunn |                      | Dr Jonathon Dunn     |  |
| 2        | 28 January 2025        | Dr Jonathon Dunn |                      | Dr Jonathon Dunn     |  |
|          | Click to enter a date. |                  |                      |                      |  |
|          | Click to enter a date. |                  |                      |                      |  |

## **Basis of Report**

This document has been prepared by SLR Environmental Consulting (Ireland) Ltd (SLR) with reasonable skill, care and diligence, and taking account of the timescales and resources devoted to it by agreement with White Hill Wind Limited (the Client) as part or all of the services it has been appointed by the Client to carry out. It is subject to the terms and conditions of that appointment.

SLR shall not be liable for the use of or reliance on any information, advice, recommendations and opinions in this document for any purpose by any person other than the Client. Reliance may be granted to a third party only in the event that SLR and the third party have executed a reliance agreement or collateral warranty.

Information reported herein may be based on the interpretation of public domain data collected by SLR, and/or information supplied by the Client and/or its other advisors and associates. These data have been accepted in good faith as being accurate and valid.

The copyright and intellectual property in all drawings, reports, specifications, bills of quantities, calculations and other information set out in this report remain vested in SLR unless the terms of appointment state otherwise.

This document may contain information of a specialised and/or highly technical nature and the Client is advised to seek clarification on any elements which may be unclear to it.

Information, advice, recommendations and opinions in this document should only be relied upon in the context of the whole document and any documents referenced explicitly herein and should then only be used within the context of the appointment.

## **Table of Contents**

| Basi  | s of Reporti                                    |
|-------|-------------------------------------------------|
| 1.0   | Introduction1                                   |
| 1.1   | Purpose of Report1                              |
| 1.2   | Project Overview1                               |
| 1.3   | Relevant Legislation1                           |
| 1.3.1 | Planning and Development Act 2000 (as amended)1 |
| 1.4   | Statement of Authority2                         |
| 1.4.1 | Andrew Torsney2                                 |
| 1.4.2 | Jonathon Dunn3                                  |
| 1.4.3 | Bird Surveyors                                  |
| 2.0   | Background Context4                             |
| 2.1   | General Approach4                               |
| 2.2   | Stage 1: Screening4                             |
| 2.3   | Stage 2: Appropriate Assessment                 |
| 2.4   | Sources of Information5                         |
| 2.5   | Consultations5                                  |
| 2.6   | Management of European Sites9                   |
| 2.7   | Overall Assessment Method9                      |
| 3.0   | Project Description and Receiving Environment9  |
| 3.1   | Project Description9                            |
| 3.1.1 | Electricity Substation                          |
| 3.1.2 | Underground Electricity Line14                  |
| 3.1.3 | Electrical Control Unit                         |
| 3.1.4 | Earthworks                                      |
| 3.1.5 | Drainage Management & Disposal                  |
| 3.1.6 | Landscaping20                                   |
| 3.1.7 | Aggregates Sources, Haul Routes & Quantities21  |
| 3.2   | Construction Phase                              |
| 3.2.1 | Construction Method                             |
| 3.2.2 | Site Entrances                                  |
| 3.2.3 | Site Access Tracks                              |
| 3.2.4 | Chemical Storage and Refuelling25               |
| 3.2.5 | Construction Waste Management25                 |
| 3.2.6 | Construction Employment                         |
| 3.2.7 | Construction Traffic                            |



| 3.3   | Operational Phase                                                                                                          | .27 |
|-------|----------------------------------------------------------------------------------------------------------------------------|-----|
| 3.4   | Decommissioning Phase                                                                                                      | .27 |
| 3.5   | Receiving Environment                                                                                                      | .27 |
| 3.5.1 | Ecology Surveys                                                                                                            | .27 |
| 3.5.2 | Habitats                                                                                                                   | .28 |
| 3.5.3 | Species                                                                                                                    | .29 |
| 3.6   | Potential Impacts of the Project on the Receiving Environment                                                              | .30 |
| 4.0   | Stage 1: Screening                                                                                                         | .33 |
| 4.1   | Pathways – Hydrological, Hydrogeological and Ecological Connections                                                        | .33 |
| 4.2   | Identification of European Sites                                                                                           | .34 |
| 4.2.1 | Likely Significant Effects For the Project 'Alone'                                                                         | .40 |
| 4.2.2 | Likely Significant Effects For the Project 'In Combination'                                                                | .40 |
| 5.0   | Conclusions                                                                                                                | .41 |
| 6.0   | Stage 2: Appropriate Assessment                                                                                            | .42 |
| 6.1   | Step 1, Part 1: Information on the Project                                                                                 | .42 |
| 6.2   | Step 1, Part 2: Information on European Sites                                                                              | .42 |
| 6.3   | Step 2, Part 1: Effects on the Integrity of European Sites 'Alone'                                                         | .42 |
| 6.4   | Step 2, Part 2: Effects on the Integrity of European Sites 'In Combination'                                                | .46 |
| 6.4.1 | Projects                                                                                                                   | .46 |
| 6.4.2 | Plans                                                                                                                      | .53 |
| 6.5   | Step 2, Part 3 and Step 3: Implications for the Conservation Objectives and Effects of the Integrity of the European Sites |     |
| 6.6   | Step 4: Mitigation Measures                                                                                                | .66 |
| 6.6.1 | Construction                                                                                                               | .67 |
| 6.6.2 | Operation                                                                                                                  | .75 |
| 6.6.3 | Decommissioning                                                                                                            | .75 |
| 6.6.4 | Efficacy of Mitigation Measures                                                                                            | .76 |
| 6.6.5 | Summary of Mitigation Measures                                                                                             | .76 |
| 7.0   | Conclusion                                                                                                                 | .77 |
| 8.0   | References                                                                                                                 | .78 |

## **Tables in Text**

| Table 2-1: Consultation Comments                                | 6  |
|-----------------------------------------------------------------|----|
| Table 3-1: Spoil Generation and Management                      | 18 |
| Table 3-2: Estimated Construction Material (Aggregates) Volumes | 21 |
| Table 3-3: Summary of Ecology Surveys                           | 28 |



| Table 3-4: | QI, SCI and Invasive Species Identified within the Receiving Environment of the Project Site                                       |    |
|------------|------------------------------------------------------------------------------------------------------------------------------------|----|
| Table 3-5: | Identification of sources for impacts arising from the project that have potential for interactions with the receiving environment |    |
| Table 4-1: | Designated Sites Considered for Screening                                                                                          | 5  |
| Table 6-1: | Characterisation of Potential Adverse Effects Arising From Project 4                                                               | 3  |
| Table 6-2: | Other Projects Considered for 'In Combination' Effects 4                                                                           | 8  |
| Table 6-3: | Unmitigated Risk of Undermining the Conservation Objectives and Affecting the Integrity of Screened In European Sites              |    |
| Table 6-4: | Summary of Mitigation Measures, Responsibilities and Efficacy in Preventing<br>Adverse Effects on European Sites                   | '6 |

## Appendices

| Appendix | Α | Figures |
|----------|---|---------|
|          |   |         |

#### Appendix B Supporting Material

- B.1 Conservation Objectives
- B.1.1 River Barrow and River Nore cSAC
- B.2 European Sites Known Threats and Pressures
- B.3 Qualifing Features Known Threats and Sensitivies
- B.4 Plans
- Appendix C Baseline Bird Report
- Appendix D Abridged Hydrology Chapter
- Appendix E Planning-Stage CEMP

## 1.0 Introduction

#### 1.1 **Purpose of Report**

The purpose of this Natura Impact Statement (NIS) is to provide the information for the competent authority, in this case An Bord Pleanála, to carry out a screening assessment and, if applicable, an Appropriate Assessment (AA) of the project, in accordance with and fulfilment of the requirements of Article 6 of the Habitats Directive.

#### 1.2 **Project Overview**

The project comprises a 110kV electricity substation; including all associated development works to accommodate its construction, operation, maintenance and the export of electricity to the national grid via the existing Kellis-Kilkenny overhead electricity transmission line; and c. 8.8 km of underground electricity line.

A full description of the project is provided in section 3.1.

#### 1.3 Relevant Legislation

The Habitats Directive (Council Directive 92/43/EEC on the Conservation of Natural Habitats and of Wild Fauna and Flora) requires all Member States to establish a strict protection regime for species listed in Annex IV, both inside and outside European sites and forms the basis for the designation of Special Areas of Conservation (SACs) and a precursor designation for natural habitat types of Community Interest. Similarly, Special Protection Areas (SPAs) are classified under the Birds Directive (Council Directive 2009/147/EEC on the Conservation of Wild Birds). Collectively, SACs, and SPAs are referred to as European sites. Across Europe these sites are known as the Natura 2000 network of sites. The European Sites Network is the minimum required to conserve certain habitats and species which are listed in the Directives.

Under Article 6(3) of the Habitats Directive, an Appropriate Assessment (AA) must be undertaken for any plan or project that is not directly connected with or necessary to the management of a Natura 2000 site but is likely to have a significant effect thereon, either individually or in combination with other plans or projects. An AA is an evaluation of the potential adverse effect of a plan or project alone or in combination with any other plan or project on the conservation objectives and therefore integrity of a European site, and the identification, where necessary, of mitigation or avoidance measures to preclude adverse effects on the integrity of the site.

Article 6, paragraph 3 of the European Commission (EC) Habitats Directive 92/43/EEC ("the Habitats Directive") as defined above states that:

"Any plan or project not directly connected with or necessary to the management of the site but likely to have a significant effect thereon, either individually or in combination with other plans or projects, shall be subject to appropriate assessment of its implications for the site in view of the site's conservation objectives. In the light of the conclusions of the assessment of the implications for the site and subject to the provisions of paragraph 4, the competent national authorities shall agree to the plan or project only after having ascertained that it will not adversely affect the integrity of the site concerned and, if appropriate, after having obtained the opinion of the general public".

#### 1.3.1 Planning and Development Act 2000 (as amended)

These processes have been further enshrined in the Planning and Development Act 2000 (as amended), in sections 177T, 177U and 177V, which are as follows:

- s177T(1)(b) A Natura impact statement means a statement, for the purposes of Article 6 of the Habitats Directive, of the implications of a proposed development, on its own or in combination with other plans or projects, for one or more than one European site, in view of the conservation objectives of the site or sites.
- (2) Without prejudice to the generality of subsection (1), a Natura impact report or a Natura impact statement, as the case may be, shall include a report of a scientific examination of evidence and data, carried out by competent persons to identify and classify any implications for one or more than one European site in view of the conservation objectives of the site or sites.
- 177U. (1) A screening for appropriate assessment of a draft Land use plan or application for consent for proposed development shall be carried out by the competent authority to assess, in view of best scientific knowledge, if that Land use plan or proposed development, individually or in combination with another plan or project is likely to have a significant effect on the European site.
- (4) The competent authority shall determine that an appropriate assessment of a draft Land use plan or a proposed development, as the case may be, is required if it cannot be excluded, on the basis of objective information, that the draft Land use plan or proposed development, individually or in combination with other plans or projects, will have a significant effect on a European site.
- s177U(5): The competent authority shall determine that an appropriate assessment of a draft Land use plan or a proposed development, as the case may be, is not required if it can be excluded, on the basis of objective information, that the draft Land use plan or proposed development, individually or in combination with other plans or projects, will have a significant effect on a European site.
- 177V. (1) An appropriate assessment carried out under this Part shall include a determination by the competent authority under Article 6.3 of the Habitats Directive as to whether or not a draft Land use plan or proposed development would adversely affect the integrity of a European site and an appropriate assessment shall be carried out by the competent authority, in each case where it has made a determination under section 177U(4) that an appropriate assessment is required, before ... (b) consent is given for the proposed development.
- 177V. (2) In carrying out an appropriate assessment under subsection (1) the competent authority shall take into account each of the following matters: (a) the Natura impact report or Natura impact statement, as appropriate; (b) any supplemental information furnished in relation to any such report or statement; (c) if appropriate, any additional information sought by the authority and furnished by the applicant in relation to a Natura impact statement; (d) any additional information furnished to the competent authority at its request in relation to a Natura impact report; (e) any information or advice obtained by the competent authority; (f) if appropriate, any written submissions or observations made to the competent authority in relation to the application for consent for proposed development; (g) any other relevant information.

#### 1.4 Statement of Authority

#### 1.4.1 Andrew Torsney

This NIS has been reviewed by Andrew Torsney BSc, MRes, PhD, ACIEEM. Andrew has undertaken Appropriate Assessments for a number of national regional and local plans as well as project level assessments. Andrew is a technical specialist in AA processes and has undertaken review processes for competent authorities such as the Department of Public



Expenditure and Reform and several County Councils such as Dun Laoghaire Rathdown and Kilkenny. Andrew has also delivered training on the role of county councils in the AA process as well as having authored NIS reports for a variety of project types.

#### 1.4.2 Jonathon Dunn

This NIS has been written by Jonathon Dunn MA (Cantab.), MSc, PhD, MCIEEM. Jonathon also managed all ecology surveys for the project. He has worked in the environmental sector since 2014 and joined SLR Environmental Consulting (Ireland) Ltd in 2021. Jonathon has undertaken a wide variety of ecological surveys for many different types of projects and has written multiple types of reports including NIS reports.

#### 1.4.3 Bird Surveyors

Details of bird surveyors are contained within Appendix C.

#### 1.4.4 Extended Habitat Surveyors

The extended habitat surveys were undertaken by Jake Matthews BSc MSc, Alice Magee BSc MSc, Hugo Brooks BSc and Deirdre McCarthy BSc.

Jake is a senior ecologist with a diversified skillset and has worked on a range of projects including key infrastructure projects, large housing developments, wind farms and quarries. Jake has experience of undertaking a wide range of species-specific surveys.

Alice is a senior field ecologist with experience of a wide range of bird surveys, along with bat and preliminary ecological appraisal surveys.

Hugo is a project ecologist with experience of a wide range of bird surveys, bat surveys and preliminary ecological appraisal surveys.

Deidre is a graduate ecologist and has experience of preliminary ecological appraisal surveys, invasive plant surveys and Annex I habitat surveys.

## 2.0 Background Context

#### 2.1 General Approach

The methodology used in this report is based on and in accordance with guidance provided by the National Parks and Wildlife Service (NPWS, 2010), the Office of the Planning Regulator (OPR, 2021) and EC Guidance (EC, 2018) (EC, 2020) (EC, 2021) on the application of Article 6 of the Habitats Directive. The 2021 EC guidance describes a series of stages and steps which should be completed when carrying out the assessment and these are followed here with the addition of sub-headings for further clarity. The assessment applies only to European sites. More specifically, it only applies to the qualifying interests (QIs) or Special Conservation Interests of such sites i.e., the features which are the reason that the site was designated. Note that Qualifying Features (QFs) is the term used when collectively discussing QIs and SCIs for European sites.

#### 2.2 Stage 1: Screening

The purpose of the screening stage is to determine, based on a preliminary assessment and objective criteria, whether a plan or project, alone and in-combination with other plans or projects, could have significant effects on European sites in view of the site's conservation objectives.

There is no necessity to establish such an effect; it is merely necessary for the competent authority to determine that there may be such an effect. The need to apply the precautionary principle in making any key decisions in relation to the tests of Appropriate Assessment (AA) has been confirmed by the case law of the Court of Justice of the European Union (CJEU). Plans or projects that have no appreciable effect on a European site may be excluded. The threshold at this first stage is a very low one and operates as a trigger in order to determine whether a Stage Two AA must be undertaken by the competent authority on the implications of the project on the conservation objectives of a European site. Therefore, where significant effects are likely, uncertain or unknown at screening stage, a second stage AA will be required.

#### 2.3 Stage 2: Appropriate Assessment

A Stage Two AA is a focused and detailed examination, analysis and evaluation carried out by the competent authority of the implications of the plan or project, alone and incombination with other plans and projects, on the integrity of a European site in view of that site's conservation objectives. Case law has established that such an Appropriate Assessment, to be lawfully conducted, in summary:

- (i) must identify, in the light of the best scientific knowledge in the field, all aspects of the project which can, by itself or in-combination with other plans or projects, affect the conservation objectives of the European site;
- (ii) must contain complete, precise and definitive findings and conclusions and may not have lacunae or gaps; and
- (iii) may only include a determination that the project will not adversely affect the integrity of any relevant European site where the competent authority decides (on the basis of complete, precise and definitive findings and conclusions) that no reasonable scientific doubt remains as to the absence of the identified potential effects.

If adverse impacts can be satisfactorily avoided or successfully mitigated at this stage, so that no reasonable doubt remains as to the absence of the identified potential effects, then the process is complete. If the assessment is negative, i.e. adverse effects on the integrity of



a site cannot be excluded, then the process must proceed to stage three and, if necessary, stage four.

#### 2.4 Sources of Information

Sources of information for the assessment of the project 'alone' include:

- White Hill Wind Farm Electricity Substation & Electricity Line Environmental Impact Assessment Report (White Hill Wind Limited, 2024);
- SLR (2024) White Hill Bird Survey Report Breeding Season 2024 (SLR, 2024) (Appendix C); and
- Site Synopses, Conservation Objectives and Standard Data Forms for European Sites<sup>1</sup>.

Sources of information for the plans and projects considered for the "in combination" assessment were as above and included:

- National Planning Database; Department of Housing, Local Government and Heritage; Available at https://data.gov.ie/dataset/national-planning-applications;
- White Hill Wind Farm Environmental Impact Assessment Report (White Hill Wind Limited, 2022);
- White Hill Wind Farm Natura Impact Statement (White Hill Wind Limited, 2022);
- Kilkenny City and County Development Plan 2021-2027 (Kilkenny County Council, 2021);
- Carlow County Development Plan 2022-2028 (Carlow County Council, 2022);
- Laois County Development Plan 2021-2027 (Laois County Council, 2021);
- National Biodiversity Action Plan (NPWS, 2023); and
- Southern Region Spatial and Economic Strategy 2020-2032 (RSES) (Government of Ireland, 2020).

#### 2.5 Consultations

The scope for this assessment has also been informed by consultation with statutory consultees and other bodies with environmental responsibility.

Issues, matters and recommendations highlighted by the responses in relation to ecology are summarised in **Table 2-1** below. Responses have been abridged where required.

<sup>&</sup>lt;sup>1</sup> <u>https://www.npws.ie/protected-sites</u> [last accessed 05/03/2025]

#### Table 2-1: Consultation Comments

| Consultee                              | Date of<br>Consultation<br>Comment | Consultee Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|----------------------------------------|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Carlow County Council                  | 2 May 2024                         | Regard must be given to relevant case law (O'Grianna V. An Bord Pleanála ([2016] IEHC 632): there is a requirement for EIAR to consider the cumulative impacts of the proposed turbines with the proposed grid connection. This follows that the proposed grid connection is an integral part of an entire wind farm project and therefore must be included in the EIAR when examining cumulative impacts.                                                                                                                                               |  |
| Department of<br>Agriculture, Forestry | 1 May 2024                         | If the proposed development will involve the felling or removal of any trees, the developer must obtain a Felling Licence from this Department before trees are felled or removed.                                                                                                                                                                                                                                                                                                                                                                       |  |
| and the Marine (DAFM)                  | 4FM)                               | The developer should take note of the contents of the Felling and Reforestation Policy document which provide a consolidated source of information on the legal and regulatory framework relating to tree felling; gov.ie-Tree Felling Licences (www.gov.ie). As this development is within forest lands, particular attention should be paid to deforestation, turbulence felling and the requirement to afforest alternative lands.                                                                                                                    |  |
|                                        |                                    | It is important to note that when applying to a Local Authority, or An Bord Pleanàla, for planning permission where developments are:                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|                                        |                                    | a) subject to an EIA procedure (including screening in the case of a sub-threshold development) and any resulting requirement to produce an EIAR; and/or                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|                                        |                                    | b) subject to an Appropriate Assessment procedure (including screening) and any resulting requirement to a Natura Impact Statement (NIS); and                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                                        |                                    | c) the proposed development in its construction or operational phases, or any works ancillary thereto, would directly or indirectly involve the felling and replanting of trees, deforestation for the purposes of conversion to another type of land use, or replacement of broadleaf high forest by conifer species,                                                                                                                                                                                                                                   |  |
|                                        |                                    | 1.that there is a requirement inter alia under the EIA Directive for an overall assessment of the effects of the project or the alteration thereof on the environment to be undertaken, including the direct and indirect environmental impact of the project; and                                                                                                                                                                                                                                                                                       |  |
|                                        |                                    | 2.pursuant to Article 2(3) of the EIA Directive, the Department of Agriculture, Food and the Marine strongly recommends that, notwithstanding the fact that a parallel consent in the form of felling licence may also have to be applied for, any EIAR and/or NIS produced in connection with the application for planning permission to the Local Planning Authority or An Bord Pleanàla, should include an assessment of the impact of and measures, as appropriate, to prevent, mitigate or compensate for any significant adverse effects direct or |  |

| Consultee                         | Date of<br>Consultation<br>Comment | Consultee Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|-----------------------------------|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                   |                                    | indirect identified on the environment arising from such felling and replanting of trees, deforestation for the purposes of conversion to another type of land use, or replacement of broadleaf high forest by conifer species.                                                                                                                                                                                                                                                                                                                   |  |  |
|                                   |                                    | 3.Please note that there must be absolute spatial consistency between the felling licence areas submitted to DAFM (second authority) and all related planning documents submitted to the first authority in respect of the felling area(s).                                                                                                                                                                                                                                                                                                       |  |  |
| Irish Wildlife Trust (IWT)        | 2 April 2024                       | We do not have the staff capacity to be respond to this consultation at the moment but we will endeavour to respond if possible.                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| Inland Fisheries Ireland<br>(IFI) | 18 April 2024                      | Article 5 of the Surface Water Regulations (SI 272 of 2009) states that there should be no deterioration in Ecological Status of surface water bodies. Article 28 (2) of the Regulations states that a surface water body whose status is determined to be less than Good shall be restored to at least Good status. The proposed surveys / reports must demonstrate how this project would cause no deterioration to the above surface water bodies and is consistent with their restoration or maintenance at Good Ecological Status or better. |  |  |
|                                   |                                    | IFI requests that the following assessments be provided:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
|                                   |                                    | <ul> <li>Baseline ecological assessments of water courses potentially affected by the proposed developmen<br/>including fish species as well as other biological and physico-chemical surveys;</li> </ul>                                                                                                                                                                                                                                                                                                                                         |  |  |
|                                   |                                    | <ul> <li>Maps of all aquatic habitats potentially affected by the project, including all drainage channels<br/>(temporary and permanent) potentially impacted by the proposed development;</li> </ul>                                                                                                                                                                                                                                                                                                                                             |  |  |
|                                   |                                    | <ul> <li>An assessment of the potential adverse effects on the proposed works on all relevant aquatic<br/>receptors, including fish. Assessments should cover area of the proposed development and the<br/>potential upstream and downstream impacts;</li> </ul>                                                                                                                                                                                                                                                                                  |  |  |
|                                   |                                    | <ul> <li>An assessment of the cumulative effects of the proposed development along with other existing or<br/>approved projects;</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|                                   |                                    | <ul> <li>An assessment of the impact on the conservation objectives of species listed as qualifying interests<br/>in the Barrow – Nore cSAC, which includes lamprey species and Atlantic salmon;</li> </ul>                                                                                                                                                                                                                                                                                                                                       |  |  |
|                                   |                                    | <ul> <li>The proposed mitigation measures to prevent erosion from soil disturbance in excavation areas and<br/>areas where there is significant movement of plant and machinery.</li> </ul>                                                                                                                                                                                                                                                                                                                                                       |  |  |

| Consultee | Date of<br>Consultation<br>Comment | Consultee Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|-----------|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|           |                                    | During the construction and operational phases, the applicant should adhere to the recommendations and guidelines outlined in IFI's 'guidelines on protection of fisheries during construction works in and adjacent to waters (2016)'.                                                                                                                                                                                                                                                                                                                                 |  |
|           |                                    | Existing watercourse crossings for the proposed grid connection route must be utilised where possible.<br>Crossings must t be accompanied by a site-specific method statement provided to IFI. The applicant should<br>provide these at least ten working days before works commence. Written approval from IFI should be<br>obtained before works proceed.                                                                                                                                                                                                             |  |
|           |                                    | Where existing crossings must undergo alteration, IFI request that these are upgraded in the interests of habitat improvement and biodiversity enhancement. Crossings should be designed to meet IFI's Fisheries Construction Guidelines referred to above. IFI should be consulted at the design phase to maximise favourable outcomes for fisheries habitats.                                                                                                                                                                                                         |  |
|           |                                    | The storage, management and conveyance of materials must not permit any deleterious matter to reach surface water systems either directly or indirectly. Watercourses must be maintained in their original state, their bankside vegetation preserved, and the existing line of the watercourse left unaltered. There should be no interference with the bed, gradient, profile or alignment of watercourses without the prior notification and the agreement of Inland Fisheries Ireland. Instream works may only take place during the period 1 July to 30 September. |  |
|           |                                    | SuDS principles should be incorporated into surface water management plans to attenuate any run-off of suspended solids or other deleterious matter. Natural flow paths should not be interrupted or diverted in a manner that would increase the risk of erosion. Drainage infrastructure should be installed during dry ground conditions.                                                                                                                                                                                                                            |  |
|           |                                    | Before works commence the applicant or the appointed contractor should appoint a suitably qualified person to oversee and implement environmental mitigation measures. Contact details should be provided to Inland Fisheries Ireland. In the event of an environmental incident which threatens an aquatic zone IFI must be informed immediately at the contact details below.                                                                                                                                                                                         |  |
|           |                                    | At all times the precautionary principle should be applied throughout the development. Records should be kept of biological and chemical monitoring undertaken before and during the construction phase and operational phase for the development. Records should also be kept of inspections of surface water mitigation measures. These records should be made available upon request to any authorised person as defined under the Local Government (Water Pollution) Act                                                                                            |  |

#### 2.6 Management of European Sites

The project includes the construction, operation and decommissioning<sup>2</sup> of an electricity substation, electrical control unit, underground electricity line and ancillary infrastructure. Therefore, it is not connected with, or necessary for, the management of any European site.

#### 2.7 Overall Assessment Method

This report assesses potential Likely Significant Effects (LSE) on European sites following a standard source-pathway-receptor (S-P-R) conceptual model, where, for an effect to be established, all three elements of this mechanism must be in place.

The absence or removal of one of the elements of the mechanism is sufficient to conclude that there is no likelihood for a potential effect to occur e.g. if there is no ecological pathway or functional link between the project and the European site, there is no potential for impact and as such no potential for significant effects.

In the context of this report, a receptor is an ecological feature that is known to be utilised by the QIs or SCIs of a European site.

A source is any identifiable element of the project (as outlined in **section 3.1**) that is known to interact with ecological processes that gives rise to impacts. It is the biophysical change caused to the environment by the project e.g., increase in sediment runoff due to ground disturbance.

A pathway is any connection or link between the source and the receptor.

Examples of each element of the model are shown below:

- Source(s) e.g. pollutant run-off from project;
- Pathway(s) e.g. groundwater connecting to nearby qualifying wetland habitats; and,
- Receptor(s) qualifying aquatic habitats and species of European sites.

An impact may occur without having a significant effect. For the effect to be significant, the QIs or SCIs of the European site must be sensitive to the biophysical change, and this would undermine the conservation objectives for that QI or SCI.

This report provides information on whether direct, indirect and cumulative adverse effects could arise from the project.

### 3.0 **Project Description and Receiving Environment**

#### 3.1 **Project Description**

The project consists of the following elements:

 A 110 kilovolt (kV) 'loop-in/loop-out' Air-Insulated Switchgear (AIS) electricity substation, including 2 no. single-storey control buildings (with a total gross floor area of 622 square metres [m<sup>2</sup>]); transformers, busbars, insulators, circuit breakers, and lightning poles, within a secure compound (with a total footprint of 10,600 m<sup>2</sup>);

<sup>&</sup>lt;sup>2</sup> While the primary function of the project is to facilitate the connection of the White Hill Wind Farm to the national electricity grid; the electricity substation will, once operational, be operated and maintained by EirGrid as part of the national electricity network. As a result, it is highly likely that the electricity substation will continue to operate following the decommissioning of the White Hill Wind Farm and, therefore, decommissioning of the substation is not proposed. The electrical control unit and underground electricity line will be decommissioned in conjunction with the White Hill Farm.



- 2 no. lattice-type interface masts, each of which will be 16 m in height, and approximately 320 m of underground electricity line between the electricity substation and interface masts to facilitate connection of the electricity substation to the existing Kellis-Kilkenny 110kV overhead electricity transmission line;
- A new site entrance from the L66732 and approximately 1.1 km of access track to facilitate access to the electricity substation and interface masts;
- Electrical control unit with a total gross floor area of 42 m<sup>2</sup> located at the permitted White Hill Wind Farm;
- A new site entrance from the L7117 and approximately 250 m of access track to facilitate access to the electrical control unit;
- Approximately 8.8 km of underground electricity line between the electricity substation and the electrical control unit; and,
- All associated and ancillary site development, excavation, construction, landscaping and reinstatement works; including a temporary construction compound and the provision of site drainage infrastructure and surface water protection measures.

#### 3.1.1 Electricity Substation

#### 3.1.1.1 Substation Compound

The project will comprise a 110kV 'loop-in/loop-out' air-insulated switchgear (AIS) electricity substation. The footprint of the substation (overall compound area) will measure approximately 10,600 m<sup>2</sup> and will be surrounded by a palisade fence, with associated gates, of 2.6 m in height for safety and security reasons. The electricity substation will contain 2 no. control buildings and all necessary electrical equipment and apparatus to facilitate the export of electricity from the permitted White Hill Wind Farm to the national grid. Ancillary infrastructure located within the footprint of the compound will include transformers, busbars, insulators, circuit breakers, and lightning poles.

The layout of the substation has been designed fully in accordance with current EirGrid specifications; however, the Developer may be instructed by EirGrid to immaterially alter the precise siting and/or specification of the control building and/or electrical equipment within the substation compound. Any such immaterial alterations or deviations have been fully assessed and provided for within this NIS.

The substation site is relatively flat and slopes gently to the south/southeast with ground elevations ranging from c. 68 m AOD in the southeast of the site to c. 73 m AOD in the northwest (interface masts). There will be a requirement to undertake minor modifications to ground levels in order to achieve the required levels for the control buildings, structures and electrical equipment. A 'cut and fill' exercise will be implemented whereby material at higher elevations (i.e. topsoil and subsoil) will be excavated and imported material (i.e. aggregates) used to make up levels at areas of lower elevation. This process, which accords with best practice construction techniques, will avoid the excavation of significant volumes of soil or the importation of significant volumes of stone aggregates in order to provide a level compound.

The substation compound will be surfaced with c. 400 mm of free-draining crushed stone such that rainwater can percolate to ground. Due to the findings of site investigations and the geological characteristics of the site, usable rock material for the construction of the access track is unlikely to be encountered during excavations and, therefore, it is likely that all aggregate material will be imported from local quarries.

Approximately 140 m of existing hedgerow will be removed to accommodate the footprint of the substation compound. The loss of hedgerow will be off-set through the planting of



hedgerows (native species) around the boundaries of the electricity substation and elsewhere within the project site. The planting of hedgerows, in addition to further landscaping measures will also serve to reduce the visibility of the electricity substation in the landscape.

#### 3.1.1.2 Control Building

The electricity substation will contain 2 no. control buildings; one of which, the Customer MV Switchgear Room ('the IPP Building'), will be operated and maintained by the Developer while the Transmission System Operator (TSO) Control Building ('the EirGrid Building') will be operated and maintained by EirGrid.

The IPP Building will measure c. 8.5 m x 20 m (gross floor area of c. 172 m<sup>2</sup>) and will have an overall height of c. 5.5 m to ridge height. The building shall be constructed of blockwork and will be finished in sand and cement render, slate roof covering and steel doors. The IPP Building will house switchgear and associated electrical equipment and apparatus.

The EirGrid Building will measure approximately 25 m x 18 m (gross floor area of c.  $450 \text{ m}^2$ ) and will have an overall height of approximately 8.5 m to ridge height. The building shall be constructed of blockwork and will be finished in sand and cement render, slate roof covering and steel doors. The control building will contain a control room to allow operatives monitor and manage the operation of the electrical apparatus and will also include storage and welfare facilities.

During the project design process, the Developer engaged with the Shankill Group Water Scheme to determine the feasibility of obtaining a water supply for the EirGrid Building and the IPP Building. While water infrastructure is located adjacent to the electricity substation site, the Developer was advised that *"Shankill GWS would not be in a position to grant a water connection to your proposed developement [sic] at this time."* Subject to a grant of planning permission, the Developer will liaise with the Group Water Scheme prior to the commencement of development to re-assess the feasibility of obtaining a water connection. However, if a connection cannot be provided at that time, a well will be bored to provide water to the respective buildings.

Wastewater arising from the EirGrid and IPP buildings will be stored in a sealed sub-surface foul holding-tank and will be removed from site as required by a local licensed waste collector. Waste water management proposals of this nature are common practice for developments of this type located in remote/rural areas with infrequent usage.

The precise internal layout of the buildings may be subject to further immaterial alterations to reflect any future revisions to EirGrid specifications. As set out above, any immaterial deviations from the precise layout and elevations are fully provided for within this NIS.

#### 3.1.1.3 Electrical Apparatus

Electrical equipment; including, but not limited to, transformers, busbars, insulators, circuit breakers, and lightning poles; will be located outside the control buildings (within the palisade fence).

The positioning of electrical equipment within the substation compound is illustrated in the accompanying planning application drawings and accords with current EirGrid specifications. Immaterial deviations to the precise siting of this internal equipment may be necessary at the time of construction in accordance with any future revisions to EirGrid specifications. To reiterate, any such deviations are fully provided for and assessed within this NIS.

#### 3.1.1.4 Interface Masts & Underground Electricity Line

The interface masts will be lattice-type masts and will be located immediately beneath the Kellis-Kilkenny overhead electricity transmission line. The masts will have a maximum height



of 16 m and a permanent above-ground footprint of c. 260 m<sup>2</sup> (total; c. 130 m<sup>2</sup> per mast) with concrete foundations below ground to a depth of c. 2 m. However, it should again be noted that the precise specifications of the interface masts may be immaterially altered to ensure compliance with any future revised EirGrid specifications.

At the location of the interface masts, the existing overhead transmission line will be broken and the proposed underground electricity line (c. 320 m) will connect the existing overhead line to the electricity substation.

Once constructed, electricity being transmitted along the Kellis-Kilkenny electricity transmission line will be diverted along the underground line and through the substation, allowing electricity generated by the White Hill Wind Farm to be exported to the national grid, before returning to the Kellis-Kilkenny electricity transmission line; hence the 'loop-in loop-out' nature of the electricity substation.

#### 3.1.1.5 Site Entrance & Access Track

Access to the electricity substation site will be provided via a new site entrance from the L66732 local road. The site entrance will be constructed, and visibility splays provided, in accordance with section 13.22.1 of the *Kilkenny City & County Development Plan 2021-2027*. Having regard to the physical characteristics of the L66732 and the nature of the road being a cul-de-sac, it is assessed that the L66732 has a design speed of 60 kph and, accordingly, visibility splays of 90 m in each direction have been provided.

The site entrance will not be required to accommodate any abnormal size loads but will be constructed to ensure ease of access and egress for standard heavy-goods vehicles (HGVs) which will deliver construction materials and electrical apparatus to the site. Works at the site entrance will comprise the removal of c. 15 m of existing roadside vegetation to create the site entrance. No hedgerow removal will be required for the provision of visibility splays due to the width of the existing roadside verge; however, roadside hedgerows will be trimmed to ensure full visibility for vehicles exiting the project site.

Following the establishment of the entrance, it will be appropriately fenced off and gated to prevent unauthorised access. Access gates will be set back 18 m from the road edge to allow HGVs pull off the public road before accessing the site which will prevent any disruption to local road users. The reinstatement of the site entrance will also incorporate the replanting of hedgerows, as appropriate.

To the north of the site entrance, it is proposed to increase the width of the paved carriageway of the L66732 to accommodate the delivery of construction materials to the electricity substation. The existing carriageway will be widened by c. 1.5 m over a distance of c. 130 m. Along this section, the existing roadside verge will be removed, and any roadside drainage features piped and backfilled, to accommodate the increased carriageway width. No hedgerow or trees will be removed; however, trimming of roadside vegetation will be undertaken.

A total of c. 1.1 km of on-site access track will be required for construction purposes and for site access during the operational phase. The access track shall be similar to normal agricultural tracks but with a slightly wider typical running width of approximately 4-5 m. The access track will largely be unsealed and constructed of crushed stone material to allow for permeability; however, c. 150 m of access track within the electricity substation compound will be finished with concrete (in accordance with EirGrid specifications). Due to the findings of site investigations and the geological characteristics of the site, usable rock material for the construction of the access track is unlikely to be encountered during excavations and, therefore, it is likely that all aggregate material will be imported from local quarries.

Following the identification of an area of potential archaeological significance during a geophysical survey of the electricity substation site, it is proposed to construct c. 30 m of



floated access tracks in its vicinity to avoid any disturbance of ground at that particular location. The floated track will be constructed through the emplacement of aggregates on the surface without any excavation of topsoil or subsoil.

Additional excavated strips will be required, where necessary, alongside the access track to accommodate drainage infrastructure and the installation of the underground electricity line. Some cut/fill in the construction of the access track will be necessary to ensure that horizontal and vertical alignments are suitable to accommodate HGV loads and drainage infrastructure. Where excess material arises from the construction of the access track, it will be utilised in the construction of trackside berms, if required, or permanently stored at the spoil deposition areas.

Approximately 80 m of hedgerow will be removed to accommodate the construction of the access track through the electricity substation site and will be replaced/replanted elsewhere within the site.

The access track intersects with a private residential/agricultural laneway and, as a consequence, it will be necessary to create 2 no. additional access points. The access points will be constructed and finished in a similar manner to that described for the site entrance above. While the access points do not adjoin a public road and there is no requirement to provide visibility splays, it is proposed to provide visibility splays of 30 m in each direction to ensure the safety of all construction and operational phase traffic associated with the project and the users of the private laneway. Approximately 10 m of existing hedgerow will be removed to accommodate the access point and will be replaced/replanted elsewhere within the project site; while further vegetation along the laneway will be trimmed back, as required, to ensure visibility is maintained at all times.

The construction of the access point to the north of the laneway will involve the bridging of a small unnamed stream. Bridging infrastructure will involve a bottomless culvert (or similar) to avoid any instream works or any restrictions to the hydraulic capacity of the channel. A Section 50 licence application will be made to the Office for Public Works prior to the installation of the culvert/bridging structure; while Inland Fisheries Ireland will also be consulted.

The construction of the access point to the south of the laneway will involve the demolition of an existing agricultural shed/structure. The structure will be dismantled in its entirety with all materials removed from site and disposed of at an approved waste management facility.

#### 3.1.1.6 Temporary Construction Compound

During the construction phase, a temporary construction compound will be required at the site of the electricity substation. The compound will extend to an area of c. 1,350  $m^2$  (0.135ha). The construction compound will comprise of the following:-

- Temporary cabins to be used for the contractor's site office, the monitoring of incoming vehicles and temporary welfare facilities for the construction staff, including temporary toilets and potable water;
- Parking for construction staff, construction vehicles, and visitors;
- Secure storage for tools, plant and small parts;
- Waste management area where waste will be sorted and collected by a licensed service provider;
- Safe bunded storage of components and materials including fuels, lubricants and oils; and,
- Security fencing around the compound.

Topsoil will be removed from the required area and side-cast for temporary storage adjacent to the compound area. The compound base will be made up of well graded aggregates, compacted as necessary.

Temporary welfare units, including chemical toilets, to be provided for construction staff will be sealed units to ensure that no discharges escape into the local environment. These will be supplied and maintained by a licensed supplier. Potable water (for drinking, food preparation, and hand washing etc.) will be supplied on-site by water dispensers and this will also be sourced and maintained by a licensed supplier.

The construction compound will be marked out and fenced to prevent encroachment onto non-designated areas. Following the completion of all construction activities, the compound will be decommissioned with all structures removed and fully reinstated. Reinstatement will involve removing crushed stone and underlying geotextile, covering with topsoil and reseeding.

The temporary construction compound has been located and designed such that all cabins, storage containers, waste management facilities and bunded areas will be located a minimum distance of 50 m from all watercourses/drainage ditches in order to minimise the risk of pollution and the discharge of deleterious matter. Stormwater which may arise from the roofs of cabins, containers or from sealed bunds will be passed through an oil interceptor prior to being discharged to the local environment.

Given the linear nature of the electricity line route, it is likely that a number of small material storage areas will be utilised along the route during the construction phase to minimise the transportation of construction materials (e.g. ducting, electricity line, joint bays, etc.). Such temporary compounds are likely to be located within agricultural farmyards or business premises along the route. Subject to a grant of planning permission, the appointed contractor will be responsible for securing consent from relevant landowners for use of their properties as temporary material storage areas.

#### 3.1.2 Underground Electricity Line

The electricity substation will be connected to the electrical control unit at the permitted White Hill Wind Farm via an underground electricity line of c. 8.8 km in length. The underground electricity line will comprise c. 6,100 m (c. 6.1 km) located within private agricultural lands/forestry and c. 2,660 m (c. 2.7 km) with the carriageways of the L6673, L6738, L7117 and L71172 local roads.

The electricity line will be installed within ducting in an excavated trench of c. 1.2 m deep and c. 2.2 m wide and pulled through the ducting in sections of c. 750 m in length or depending on the length of cable required. Cable (electricity line) lengths will be connected at designated 'jointing plinths' to be installed along the route. It is estimated that 12 no. jointing plinths will be required along the route of the underground electricity line; however, the exact number to be constructed will be confirmed as part of the post-consent detailed design process. Jointing plinths will comprise a concrete slab of c. 2 m<sup>2</sup> which will be installed within the trench to provide a firm foundation for the jointing of the electricity line. Traditional joint bay chambers will not be required. Jointing plinths will, insofar as possible, be located within private lands to minimise the extent of infrastructure within the public road network.

Following the installation of the ducting and jointing plinths; ground levels will then be made up using appropriate material (including sand and excavated material, if appropriate) and finished/reinstated to the requirements of the Planning Authority (public road) or landowner (private lands).

All public roads along which it is proposed to install the underground electricity line will be subject to a full-carriageway reinstatement (re-surfacing) of the section where the electricity



line is installed thus ensuring that there are no long-term effects on the public road network. Where the electricity line crosses a public road, a 20 m section (i.e. 10 m either side of the centre point of the trench) will be subject to a full carriageway reinstatement.

Within private lands, the trench will be backfilled, finished with topsoil and reseeded or allowed to naturally revegetate. Where the electricity line passes through a hedgerow, c. 4-5m of hedgerow and/or trees will be removed to facilitate construction activities; however, all such hedgerow/trees will be replaced/replanted on a like-for-like basis. The electricity line will also pass through a number of existing stonewalls and stone/earthen banks. Insofar as possible, the electricity line has been routed to avoid the requirement for the removal of stonewalls and will pass through existing access points in the stonewalls. In the event that a stonewall is disturbed during the construction of the electricity line, it shall be replaced and re-constructed to its original condition. Similarly, stone/earthen banks will be re-constructed to their original condition.

All trenching works will be undertaken to ensure that only short sections of trench are open at any one time. Excavated materials will be stored separately (topsoil, subsoil and aggregates [as encountered]) for use during the reinstatement of the trench or disposed of at an appropriate licensed facility as necessary. The sequence of works is typically as follows:-

- Identify existing underground services prior to excavation;
- Excavate the trench to the required dimensions;
- Place a blinding layer (sand) at the base of the trench;
- Place and joint the high-density polyethylene (HDPE) power ducts using ties at 3 m intervals;
- Lay in and compact a layer of sand around and above ducts and place red marker strips above;
- Install HDPE communications cable ducts;
- Lay in and compact an additional layer of gravel/excavated material;
- Final backfill layer to include yellow warning tape; and,
- Appropriate reinstatement, as discussed above.

Prior to the commencement of construction, a detailed Method Statement will be prepared by the contractor, to be appointed by the Developer, outlining the precise methodology to be followed during the trenching phase. This Method Statement will be reviewed by the Environmental Manager (EM; to be appointed by the selected contractor) to ensure that the environmental protective measures to be implemented are suitable and to the required standard.

Horizontal Directional Drilling (HDD) will be undertaken at 5 no. locations along the underground electricity line; namely at the intersections of the electricity line and the Paulstown Stream, Moanmore Stream and tributary, Shankill Stream and the crossing of the unnamed stream along the access track leading to the electricity substation. The use of this methodology will avoid any in-stream works or any direct or indirect effect on the morphology of the stream. Launch and receptor pits will be excavated at either side of the streams; a minimum of 10 m away from the streams; to accommodate the drilling rig. The bore will be at a minimum depth of 2.5 m below the stream channels to ensure that there are no impacts on the stream channels. Following the installation of the ducts, the launch and receptor pits will be fully reinstated. Marker posts will be placed at either side of the streams to indicate the location and alignment of the electricity line.

Prior to the commencement of drilling operations, the appointed contractor will prepare a detailed Method Statement outlining the precise methodology to be implemented. This



statement will be reviewed by the EM to ensure that the environmental protective measures to be implemented are suitable and to the required standard and may be reviewed, as necessary, by the Planning Authority.

The electricity line crosses a Gas Network Ireland high pressure gas pipeline along the L6673. Following consultation with Gas Network Ireland, it was confirmed to the Developer that a minimum separation between the gas line and the electricity line of 0.6 m would be required. Due to the below-ground depths of the existing gas line (3.2 m) and the proposed electricity line (1.1 m), a separation of 2.1 m is achievable and will be provided for.

The installation of the underground electricity line will be undertaken in strict accordance with the Code of Practice for Working in the Vicinity of the Transmission Network and particularly with respect to the use of hand-held equipment within 1.5 m (linear distance) of the pipeline. Prior to the commencement of trenching activities within 50 m of the gas line, the appointed contractor will prepare a detailed Method Statement outlining the precise methodology to be implemented. This statement will be reviewed by Gas Networks Ireland to confirm the appropriateness of the proposed activities and ensure that all necessary mitigation and incident prevention measures are adhered to. The Method Statement may also be reviewed, as necessary, by the Planning Authority.

#### 3.1.3 Electrical Control Unit

It is proposed to install a pre-fabricated modular electrical control unit at the southern extent of the White Hill Wind Farm in order to facilitate the transfer electricity from the various electrical circuits to be installed at the White Hill Wind Farm to the underground electricity line. The electrical control unit will measure approximately 10.5 m x 4 m (total gross floor area of c.  $42 \text{ m}^2$ ) and will have an overall height of approximately 4.5 m. The unit will be installed on concrete supports approximately 1.2 m above the finished level of the compound (see below); and will be finished, externally, in an off-white or light grey colour and a black roof.

The control unit will be installed within an enclosed hardcore-surfaced compound which will measure approximately 315 m<sup>2</sup> and will be surrounded by a palisade fence, with associated gates, of 2.6 m in height for safety and security reasons. The compound site is relatively flat; however, there will be a requirement to undertake minor excavations to provide a level footing for the control unit. The compound will be surfaced with c. 400 mm of free-draining crushed stone such that rainwater can percolate to ground.

The compound will be accessed via the creation of a new site entrance, from the L7117 local road, and the construction of c. 250 m of access track. The site entrance will be constructed as described above at **section 3.1.1.5**; with c. 10 m of roadside hedgerow being removed and visibility splays (90 m in each direction) will be provided in accordance with section 16.10.7 of the Carlow County Development Plan 2022-2028. The provision of visibility splays will not require the removal of any roadside hedgerow due to the width of the existing roadside verge; however, hedgerows may be trimmed back to ensure full visibility is maintained.

The construction of the access track will again be undertaken as described at **section 3.1.1.5** and will necessitate the removal of c. 10 m of existing hedgerow; however, this removal (and that required for the site entrance as described above) will be off-set through replanting elsewhere within the project site. The control unit will be largely screened from view; however, bolstering of an existing hedgerow immediately south of the compound will be undertaken to provide an increased level of screening from the L7117 local road.

#### 3.1.4 Earthworks

Earthworks will arise from the excavation of topsoil and subsoil at the locations of the electricity substation, access track and site entrance, interface masts, electrical control unit and along the route of the electricity line.

The site of the electricity substation is gently sloping towards the south-southeast and, as a result, extensive earthworks will not be required. As set out above, in order to provide a level substation compound area and to ensure appropriate levels are available for the construction of the electrical control building and electrical equipment foundations, it is proposed to implement a cut and fill approach whereby topsoil and subsoil will be excavated at higher elevations and imported material (aggregates) will be deposited at areas of lower elevation to create a level platform. This process will avoid excessively deep or expansive excavations and will, similarly, avoid the requirement to import significant volumes of stone aggregates to make up levels. Additionally, this process will ensure that the geological integrity of the site is maintained. Following the cut and fill process, the substation compound will be finished with compacted stone aggregates.

Due to the generally shallow nature of excavations, substantial levels of spoil are not predicted to be generated. It is proposed that excavated material (topsoil and subsoil) will, insofar as possible, be utilised in the post-construction reinstatement of the project (e.g. at the electricity substation site, interface mast foundations, access track and electricity line trench).

As part of the design process, considerable attention has been given to the extent of excavations required to construct the project in order to minimise the generation of spoil and, subsequently, to the management of excavated material. **Table 3-1** below, provides a breakdown of the spoil volumes predicted to be generated and proposals regarding the reuse or disposal of this material.

Where excess material is generated at the electricity substation site or along the route of the underground electricity line which cannot be utilised for reinstatement or landscaping purposes, it is proposed to develop 2 no. dedicated spoil deposition areas immediately northeast of the electricity substation where excess material will be stored permanently. It is estimated that c. 10,385 m<sup>3</sup> of excess material (topsoil and subsoil) will be stored in the deposition areas. The locations of the deposition areas were selected due to the general absence of environmental constraints, available separation distances to watercourses, generally flat or gently sloping gradient and close proximity thus avoiding traffic movements on the public road network.

Spoil will be transported to the deposition areas where is will be placed in layers in accordance with best-practice methods. The deposition areas will have a height of 3.5 m. Appropriate drainage management measures will be implemented to ensure that the deposited spoil does not become waterlogged. Following the completion of construction, the deposition areas will be covered with topsoil and allowed to vegetate. Works at the spoil deposition areas will be monitored, on a weekly basis during the construction phase and monthly for a six-month period thereafter, by an appropriately qualified geotechnical engineer.

During the construction phase, material will be generated from the excavation of the underground electricity line trench. In total, it is estimated that c. 17,330 m<sup>3</sup> will be excavated comprising topsoil, subsoil, rock and road pavement material. Approximately 14,045 m<sup>3</sup> of this material will be reused in the backfilling and reinstatement of the electricity line trench, while 2,630 m<sup>3</sup> will be stored at the spoil deposition areas. Due to potential for soil contamination, all road pavement material (tar & chips, etc.) will be disposed of at an approved waste facility.

A Planning-Stage Spoil Management Plan (enclosed within the Planning-Stage Construction & Environmental Management Plan [CEMP] at **Appendix E**) has been prepared to detail proposals regarding the appropriate management of material which may arise from the construction of the project. Prior to the commencement of development at the site, a detailed Spoil Management Plan will be prepared following the post-consent detailed design process and will address the reuse, reinstatement, storage and restoration of all material excavated during the construction phase including detailed methodologies regarding the establishment and management of the spoil deposition areas.

| Project Element                                                                                                    | Volume of<br>Material to be<br>Excavated (m <sup>3</sup> ) | Volume of<br>Material to be<br>utilised for<br>construction/<br>reinstatement/<br>landscaping (m <sup>3</sup> ) | Volume of<br>Material to be<br>disposed of in<br>deposition areas<br>(m <sup>3</sup> ) | Volume to be<br>disposed of off-<br>site (m <sup>3</sup> ) |
|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------|
| Electricity<br>Substation (incl.<br>substation<br>compound,<br>access track,<br>site entrance,<br>interface masts) | 7,965                                                      | 200                                                                                                             | 7,755                                                                                  | 10                                                         |
| Temporary<br>Construction<br>Compound                                                                              | 685                                                        | 685                                                                                                             | 0                                                                                      | 0                                                          |
| Underground<br>Electricity Line                                                                                    | 17,330                                                     | 14,045                                                                                                          | 2,630                                                                                  | 655                                                        |
| Electrical<br>Control Unit<br>(incl. compound,<br>access track and<br>site entrance)                               | 950                                                        | 100                                                                                                             | 850 <sup>3</sup>                                                                       | 0                                                          |

#### Table 3-1: Spoil Generation and Management

#### 3.1.5 Drainage Management & Disposal

#### 3.1.5.1 Construction Phase

Construction works will be carried out in accordance with the 'Land & Soil' and 'Water' assessments and mitigation measures included in the accompanying EIAR in order to prevent any likely significant effects on nearby watercourses by debris, silt and hydrocarbons (see **Appendix D**).

Possible sources of effects on the hydrological environment during construction include increased volumes of surface water runoff; the generation of silt laden runoff from excavations and the storage of stockpiled materials; contamination due to the leakage of

<sup>&</sup>lt;sup>3</sup> It should be noted that due to the proximity of the location of the electrical control unit to the permitted White Hill Wind Farm, excess spoil will be deposited at spoil deposition areas permitted under An Bord Pleanála Reference ABP-315365-22)



oils/fuel from site vehicles; spillage during refuelling operations; and leakage from chemical, waste and fuel storage areas.

A series of embedded mitigation and best-practice measures have been incorporated within the project design. Firstly, clean water drains will be installed upslope of the works area to intercept incidental surface water runoff and direct it away from the works area to prevent it becoming contaminated. Clean water drains will include check dams to control flow rates and avoid erosion or scouring of the drain; before water is discharged by a buffered outfall or level spreader at greenfield rates. Water will be discharged from the clean water drains over grassland to provide filtration and to ensure that no silt or sediment is discharged to the drainage network.

All surface water runoff from works areas, excavations, stockpiles, or from dewatering activities at the electricity substation site will be intercepted by downslope dirty water drains. The dirty water drains will include check dams to limit flow rates to avoid any erosion or scouring of the drains. The drains will direct dirty water to stilling ponds (also known as silt/settlement/sediment ponds/traps)<sup>4</sup> where water will be stored for an appropriate period of time such that silt/sediment or suspended material falls to the floor of the pond. The treated (clean) water will then be discharged from the stilling ponds to a lagoon-type settlement pond which will store the water for a further period of time to ensure that all entrained sediment is removed. Finally, the clean water will be discharged from the lagoon-type settlement pond via a buffered outfall or level spreader, at greenfield rates, over grassland to provide a further layer of filtration and treatment.

Surface water control measures will be implemented as construction progresses through the substation site; however, prior to the commencement of earthworks, temporary silt/sediment control infrastructure (e.g. straw bales) will be placed in any agricultural drains around the site until the full range of construction phase measures are installed.

The inclusion of these surface water runoff measures within the project design will avoid any discharge of silt or sediment laden waters directly to any surface water feature or to ground prior to being fully treated. The precise design, sizing and siting of drainage infrastructure (including the size of stilling ponds, lagoon-type settlement ponds and discharge rates) will be confirmed as part of the post-consent detailed design process; however, it can be confirmed that the design will be reflective of predicted precipitation levels with an appropriate allowance for climate change.

Along the route of the underground electricity line, temporary surface water control measures will be installed within roadside drainage features, agricultural drains and streams as construction progresses along the route. Such features may include silt fences, silt traps or straw bales which will ensure that silt/sediment or suspended material is not discharged to downstream waters.

As described above, at the intersection of the route of the underground electricity line and the Paulstown stream, Moanmore 14 stream and unnamed tributary, Shankill stream and an unnamed stream, it is proposed that the underground electricity line will be installed via HDD. All HDD works will be undertaken in strict accordance with best practice methodologies with surface water measures being installed; including the installation of double silt fencing, avoidance of any refuelling activities within 100 m of the streams, bunding of the Clear Bore<sup>™</sup> batching, pumping and recycling plants, spill kits being available in the event of an accidental spillage or leakage, and the provision of adequately sized skips for the temporary storage of drilling arisings and drilling flush. All such arisings and flush will be disposed of at a licensed waste management facility.

<sup>&</sup>lt;sup>4</sup> Please note that the nomenclature of this surface water protection infrastructure may be used interchangeably within this EIAR and accompanying documentation.



The precise implementation and siting of these measures will be determined, subject to planning permission being granted, following the detailed post-consent design process and will be included within a detailed CEMP to be agreed with the Planning Authority prior to the commencement of construction.

A Planning-Stage Surface Water Management Plan (SWMP) has been prepared in respect of the project (enclosed within the Planning-Stage CEMP at **Appendix E**). This SWMP will also be further developed prior to the commencement of development, following the postconsent detailed design process, and will incorporate the precise implementation and siting of surface water management infrastructure.

#### 3.1.5.2 Operational Phase

Due to the permeable nature of the substation compound, electrical control unit compound and access tracks, the vast majority of rainfall will percolate to ground during the operational phase. Accordingly, the majority of surface water drainage infrastructure installed during the construction phase (dirty-water drawings, stilling ponds and lagoon-type settlement ponds) will be decommissioned following the completion of construction.

Stormwater drainage infrastructure will be installed around the EirGrid Building, IPP Building and electrical control unit to capture any runoff from roofed or paved areas; while permanent drainage infrastructure will be installed at the perimeter of the electricity substation compound.

All stormwater and surface water from the electricity substation compound will be directed to a permanent attenuation pond which will allow for the storage of water until such time as all suspended sediment is removed and the water can be safely discharged. As above, water will be discharged to an existing sheough at greenfield rates via a buffered outfall to prevent and erosion or scouring. Additionally, all stormwater and surface water from the substation compound will be passed through an oil/hydrocarbon interceptor to prevent the discharge of any hydrocarbons.

#### 3.1.6 Landscaping

As has been described in the preceding sections, all hedgerows removed to accommodate the provision of site entrances, access tracks and the electricity substation will be replaced to ensure that there is no net loss of hedgerow habitats as a result of the construction of the project.

Any hedgerow lost due to the construction of site entrances (i.e. at the electricity substation and electrical control unit) will be replaced alongside the installation of gates and fencing at the respective entrances. Hedgerows lost due to the construction and continued presence of access tracks and the electricity substation will be replaced, primarily, through replanting around the perimeter of the electricity substation and along access tracks.

In addition to the replacement of hedgerows, and in order to assist in the assimilation of the electricity substation and electrical control unit into the existing landscape fabric, further landscaping proposals have been incorporated into the design of the project and comprise the following:-

- Bolstering/reinforcing of existing hedgerows in the environs of the electricity substation and electrical control unit; and,
- Planting of wildflower or wild grass mixes at infrastructure margins and residual areas of the substation site.

In addition to the visual screening effect of the proposals; the landscaping measures have been incorporated into the design of the project to also ensure that there is no net loss of



biodiversity as a result of the project and, insofar as possible, give rise to a biodiversity net gain.

Hedgerow and tree species to be planted will be native Irish species and will be selected to complement those currently found within the local landscape. The proposed planting locations have been carefully selected to ensure sufficient separation distances to electrical equipment.

#### 3.1.7 Aggregates Sources, Haul Routes & Quantities

Aggregates; including stone and concrete; will be imported from local suppliers. No rock will be sourced from on-site excavations for reuse in the construction phase.

Only fully licensed quarries which have been subject to EIA and have appropriate planning permission for the volumes of material to be extracted will be used. These aggregates are slated for extraction in the normal course of the relevant quarry's business and therefore will have no additional likely significant environmental impacts above and beyond those normally entailed in the operation of the quarry.

As part of a Traffic Management Plan, which will be agreed with the Planning Authority prior to the commencement of development, suppliers will be instructed to utilise the national and regional road networks to access the site, and to avoid local roads, insofar as possible.

On the basis of the design process undertaken to date, the estimated volumes of construction materials/aggregates (rock, stone, concrete and sand) required in the construction of the project are detailed at **Table 3-2** below.

| Infrastructure<br>ID                                                                                                     | Rock/Stone<br>sourced from<br>On-Site<br>Excavations<br>(m <sup>3</sup> ) | Rock/Stone<br>sourced from<br>Local Supplier<br>(m³) | Concrete<br>source from<br>Local<br>Supplier (m <sup>3</sup> ) | Sand<br>sourced from<br>Local<br>Supplier (m <sup>3</sup> ) | Road<br>Pavement<br>/ Tar &<br>Chips<br>sourced<br>from<br>Local<br>Supplier<br>(m <sup>3</sup> ) |
|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| Electricity<br>Substation<br>(incl.<br>substation<br>compound,<br>access track,<br>site entrance,<br>interface<br>masts) | 0                                                                         | 9,135                                                | 220                                                            | 20                                                          | 50                                                                                                |
| Temporary<br>Construction<br>Compound                                                                                    | 0                                                                         | 410                                                  | 20                                                             | 0                                                           | 0                                                                                                 |
| Underground<br>Electricity Line                                                                                          | 0                                                                         | 3,060                                                | 435                                                            | 2,630                                                       | 1,020                                                                                             |
| Electrical<br>Control Unit<br>(incl.                                                                                     | 0                                                                         | 665                                                  | 15                                                             | 10                                                          | 0                                                                                                 |

Table 3-2: Estimated Construction Material (Aggregates) Volumes

| Infrastructure<br>ID                               | Rock/Stone<br>sourced from<br>On-Site<br>Excavations<br>(m <sup>3</sup> ) | Rock/Stone<br>sourced from<br>Local Supplier<br>(m <sup>3</sup> ) | Concrete<br>source from<br>Local<br>Supplier (m <sup>3</sup> ) | Sand<br>sourced from<br>Local<br>Supplier (m <sup>3</sup> ) | Road<br>Pavement<br>/ Tar &<br>Chips<br>sourced<br>from<br>Local<br>Supplier<br>(m <sup>3</sup> ) |
|----------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| compound,<br>access track<br>and site<br>entrance) |                                                                           |                                                                   |                                                                |                                                             |                                                                                                   |

#### 3.2 Construction Phase

The construction phase is likely to last for approximately 15-18 months from the commencement of further site investigations through the installation of underground electricity line, construction of the electricity substation and concluding with the commissioning of the electrical apparatus, site reinstatement and landscaping.

The construction phase of the project will comprise a 6-day week with normal working hours from 07:00 to 19:00, Monday to Friday and 07:00 to 13:00 on Saturdays. No works will be undertaken on Sundays or on public holidays. It may, however, be necessary to undertake works outside of these normal hours in exceptional circumstances or in the event of any emergency. Where construction activities are necessary outside of the normal working hours, local residents and the Planning Authority will receive prior notification.

No construction works are envisaged during the operational phase. Works during this phase will typically involve the routine maintenance, inspection and servicing of the electrical equipment and the electricity substation site.

#### 3.2.1 Construction Method

The construction method for the project will consist of the following general sequence:-

- Establishment of necessary traffic management measures at the substation site entrance, with site entrance to be fully established (including provision of visibility splays) in advance of other works commencing on site;
- Installation of preliminary surface water control measures;
- Carriageway widening works along the L66732;
- Progressive construction of the access track and installation of drainage system and surface water control measures;
- Establishment of temporary construction compound;
- Site preparatory works and groundworks associated with the substation compound including EirGrid Building and IPP Building;
- Establishment and continued management of spoil deposition areas;
- Construction of the EirGrid Building and IPP Building;
- Construction of bases or plinths for electrical apparatus;
- Erection of palisade fencing around substation compound;

- Installation of internal and external electrical apparatus in EirGrid Building and IPP Building and within compound;
- Installation of underground electricity line between electricity substation and electrical control unit including the advance installation of any surface water protection measures and the completion of HDD works;
- Installation of temporary wooden pole-sets to carry and maintain strain of the 110kV Kellis-Kilkenny electricity transmission line during installation of interface masts;
- Preparatory groundworks associated with the interface mast foundations;
- Installation of interface masts;
- Installation of underground electricity line between substation and interface masts;
- Establishment of necessary traffic management measures at the electrical control unit site entrance, with site entrance to be fully established (including provision of visibility splays) in advance of other works commencing on site;
- Installation of preliminary surface water control measures;
- Progressive construction of the access track and installation of drainage system and surface water control measures;
- Site preparatory and groundworks associated with the control unit compound;
- Installation of electrical control unit;
- Commissioning and testing of electrical apparatus within electricity substation and electrical control unit;
- Connection of underground electricity line to the electricity substation and 110kV Kellis-Kilkenny electricity transmission line;
- Decommissioning of temporary wooden pole-sets;
- Connection of underground electricity line to the electrical control unit;
- Final commissioning of electrical apparatus and underground electricity line; and,
- Progressive site reinstatement, restoration, landscaping and planting proposals including the installation of stockproof fencing and the erection of gates.

A detailed CEMP; which will further develop the Planning-Stage CEMP enclosed at **Appendix E**; will be prepared in advance of all construction activities and will incorporate all mitigation measures included in this EIAR.

The construction phase will be supervised by a range of environmental and engineering specialist personnel; including a Project Supervisor for the Construction Stage (PSCS), Ecological Clerk of Works (ECoW), Archaeological Clerk of Works (ACoW), and Geotechnical Clerk of Works (GCoW), among others; who will liaise closely with the appointed contractor's on-site Environmental Manager (EM) to monitor construction activities and to ensure that all mitigation measures included in this EIAR, and all conditions of consent subject to a grant of planning permission, are implemented.

The detailed CEMP, which will incorporate further technical information following the undertaking of post-consent detailed design work, will be submitted to the Planning Authority for approval prior to any works commencing on the project site. The CEMP shall also provide additional details of embedded best construction practices including:-

• Specific design details of the temporary construction compound, including specific identification of areas for the storage of construction waste, site offices and staff facilities;



- A detailed Traffic Management Plan for the timing and routing of construction traffic to and from the construction site and associated directional signage, to include, in particular, proposals to facilitate and manage the delivery of loads and alternative arrangements to be put in place for pedestrians and vehicles during the course of site development works;
- Implementation stage details of the proposed construction methods, including detailed measures regarding the management of spoil;
- Implementation stage details to prevent the spillage or deposit of clay, rubble or other debris on the public road network;
- Implementation stage details for the prevention of noise, dust and vibration, and any monitoring of such levels;
- Storage and containment of all construction related fuel and oil within specially constructed bunds to ensure that fuel spillages are fully contained. All such bunds shall be roofed to exclude rainwater;
- Appropriate provision for refuelling of vehicles;
- Off-site disposal of construction waste:
- Final drainage design specifications to ensure that surface water run-off is controlled such that no silt or other pollutants enter watercourses in full compliance with the measures outlined in this EIAR; and,
- Further details of the intended hours of construction.

The CEMP will also take full cognisance of, and incorporate, the measures outlined within any specific environmental management plans proposed as part of this NIS and will also incorporate any specific requirements set out in conditions of consent, subject to a grant of planning permission.

#### 3.2.2 Site Entrances

As discussed at **section 3.1.1.5** above, access to the substation site will be provided via a new site entrance from the L66732 local public road. The site entrance will not be required to accommodate any abnormal size loads but has been designed to ensure ease of access and egress for standard HGVs which will deliver construction materials and electrical apparatus to the site.

The site entrance will be constructed in accordance with the requirements of the Planning Authority and appropriate visibility splays of 90 m in each direction have been provided. Due to the requirement to provide visibility splays, it will be necessary to trim back roadside hedgerows; however, there will be no requirement for the removal of any hedgerow.

Following the completion of construction, the site entrance will be appropriately fenced off and gated to prevent unauthorised access. The reinstatement of the site entrance will also incorporate the replanting of hedgerows, with native species. Hedgerows will be appropriately sited to allow for future growth while ensuring, at all times, that visibility splays are maintained during the operational phase.

To the north of the site entrance, the width of the paved carriageway of the L66732 will be increased to accommodate the delivery of construction materials to the electricity substation. The existing carriageway will be widened by c. 1.5 m over a distance of c. 130 m. Along this section, existing roadside verge will be removed, and any roadside drainage features piped and backfilled, to accommodate the increased carriageway width. No hedgerow or trees will be removed; however, trimming of roadside vegetation will be undertaken.

The electrical control unit will be accessed via the creation of a new site entrance, from the L7117 local road. The site entrance will be constructed generally as described above with c. 10 m of roadside hedgerow being removed and visibility splays of 90 m in each direction being provided. The provision of visibility splays will not require the removal of any roadside hedgerow due to the width of the existing roadside verge; however, hedgerows may be trimmed back to ensure full visibility is maintained.

#### 3.2.3 Site Access Tracks

The on-site access tracks will generally be constructed as follows:

- Topsoil and subsoil will be excavated, side-cast and stored in separate mounds in appropriate areas adjacent to the access track;
- Crushed stone will be laid on a geo-textile mat (where required) and compacted in layers to an appropriate depth. The access track will not be finished with tar and chips or concrete (other than a short section within the electricity substation compound which shall be finished with concrete) and the surface will be permeable to allow incidental rainfall to percolate to ground thus avoiding significant volumes of surface water run-off being generated and avoiding changes to the natural drainage regime;
- Drainage infrastructure and the underground electricity line will be installed adjacent to the access tracks; and,
- The edges of the access tracks will be finished and reinstated with excavated material and reseeded or allowed to vegetate naturally.

#### 3.2.4 Chemical Storage and Refuelling

As described at **section 3.1.1.6**, storage areas for chemicals and fuels will comprise bunded areas of sufficient capacity within the temporary construction compound. An oil interceptor will be installed within the surface water drainage system during the construction phase to intercept any accidental hydrocarbon spillages/discharges that may be present.

From the construction compound, fuel will be transported to the works area, by a 4x4, in a double skinned bowser with drip trays under a strict protocol and carried out by suitably trained personnel. The bowser/4x4 will be fully stocked with spill kits and absorbent material, with delivery personnel being fully trained to deal with any accidental spills. The bowser will be bunded appropriately for its carrying capacity. A 50 m buffer will be observed around all natural surface water features and no refuelling will be permitted within this zone.

#### 3.2.5 Construction Waste Management

Waste will be generated during the construction phase and the main items of anticipated construction waste are as follows:-

- Hardcore, stone, gravel, concrete, plaster, topsoil, subsoil, timber, concrete blocks and miscellaneous building materials;
- Waste from chemical toilets;
- Plastics; and
- Oils and chemicals.

Waste disposal measures proposed include:

• On-site segregation of all waste materials into appropriate categories including, for example, topsoil, subsoil, concrete, rock, tiles, oils/fuels, metals, electricity cable offcuts, dry recyclables (e.g. cardboard, plastic, timber);



- All waste materials will be stored in skips or other suitable and sealed receptacles in a designated area of the construction compound;
- Wherever possible, left-over materials (e.g. timber off-cuts) and any suitable demolition materials shall be re-used on-site;
- Uncontaminated excavated material (topsoil, subsoil, etc.) will be re-used on-site in preference to importation of clean inert fill;
- If suitable rock is encountered, it will be utilised for infill during construction;
- All waste leaving the site will be transported by licensed contractors and taken to suitably licensed facilities and will be recycled or reused where possible; and,
- All waste leaving the site will be recorded in accordance with legal requirements and copies of relevant documentation maintained.

A Waste Management Plan has been prepared for the project and is included within the Planning-Stage Construction & Environmental Management Plan (**Appendix E**).

#### 3.2.6 Construction Employment

It is estimated that up to 40 no. people will be employed during the approximately 15 to 18month construction phase. The actual number will depend on the activities being undertaken at any given time and will vary throughout the course of the construction programme. Employment will be the responsibility of the construction contractor appointed by the Developer, but it is likely that the workforce will include labour from the local area.

#### 3.2.7 Construction Traffic

Vehicular traffic required for the construction phase is likely to include:

- Articulated trucks (HGVs) to bring initial plant and machinery to site and later to bring electrical equipment and other construction materials;
- Tipper trucks and excavation plant involved in site development and excavation works;
- Miscellaneous vehicles and handling equipment, including vehicles associated with construction workforce.

Effects from construction traffic could include temporarily increased local traffic levels and traffic noise; while disruption is likely to occur during the installation of the underground electricity cables. Construction traffic on the local road network and construction works along the electricity line route will be managed in accordance with a Traffic Management Plan and the requirements of Kilkenny Council and Carlow County Council.

Traffic management measures will be implemented during the construction phase, as follows:

- Signage on approach roads and at the site entrances giving access information;
- Temporary traffic restrictions kept to minimum duration and extent;
- Diversions put in place to facilitate continued use of roads where restrictions have to be put in place (e.g. along the electricity line route). Local access for residents and landowners will be maintained at all times;
- Appropriate arrangements will be implemented for emergency services, school bus routes and other public transport services;
- One way systems will be implemented for construction traffic, where possible, to prevent construction vehicles meeting;



- Speed limits will be strictly enforced;
- A designated person will be appointed to manage access arrangements and act as a point of contact to the public; and,
- All reinstatement works to be carried out in full consultation with Kilkenny County Council and Carlow County Council.

#### 3.3 Operational Phase

During the operational phase, other than routine maintenance and monitoring, there will be no other activities associated with the project. On average, the site will be visited on 1-2 no. occasions per week by a light commercial vehicle for maintenance purposes. In exceptional circumstances, there may be a requirement to replace an electrical component which may require more substantive works on site; however, large scale construction works are unlikely to be required.

Waste will be generated during the operational phase including, for example, packaging from spare parts or equipment. All waste will be removed from site and reused, recycled or disposed of in accordance with all relevant waste management regulations and guidelines.

#### 3.4 Decommissioning Phase

While the primary function of the project is to facilitate the connection of the White Hill Wind Farm to the national electricity grid; the electricity substation will, once operational, be operated and maintained by EirGrid as part of the national electricity network. Therefore, it is highly likely that the substation will be operated indefinitely including following the decommissioning of the White Hill Wind Farm (i.e. 35-years following its date of commissioning).

The electrical control unit and underground electricity line, connecting the White Hill Wind Farm to the electricity substation, will be decommissioned upon the decommissioning of the White Hill Wind Farm.

The modular electrical control unit will be removed from site to an approved facility for a strip out and removal of electrical equipment and other materials that can be reconditioned and reused or sold as scrap. The modular unit itself shall then be reused, recycled or disposed of at an approved waste management facility. The palisade fence and gates shall be removed and recycled or reused and the hardcore compound shall be grubbed up to a depth of 0.5 m below ground level, covered with soil and reseeded. If it is decided not to retain the access track for agricultural/other purposes, then it shall be removed using a similar methodology.

The electricity line will be disconnected from the electricity substation and electrical control unit and removed from the ducting. At the locations of the joint bases, small excavations will be undertaken to expose the ducting and the electricity line removed in sections between the respective joint bases. In order to minimise ground disturbance, the ducting shall be left in situ. Following the removal of the sections of electricity line, the excavated area shall be backfilled and reinstated to its original condition.

The majority of electricity lines/cables used in renewables energy projects contain a core of either copper or aluminium, both of which can be readily recycled. All electricity lines/cables will be removed to an appropriate licensed facility for recycling; while the ducting will remain in situ to avoid the requirement for further excavations.

#### 3.5 Receiving Environment

#### 3.5.1 Ecology Surveys

Table 3-3 details all the surveys undertaken at the project site.

Note that extended habitat and breeding bird surveys were undertaken prior to the finalisation of the project design process. Therefore, a small section of the on-road component of the underground electricity line was not surveyed at the same time as the rest of the project. This new on-road section was subjected to an extended habitat survey in January 2025, which is acknowledged to be sub-optimal for botanical or habitat surveys. This is not considered to be a significant limitation, as public roads are highly artificial in nature and roadside verges are unlikely to contain highly valuable habitats or plant species. Similarly, no additional breeding bird surveys were undertaken at this location given the highly artificial nature of the habitat and low value to birds.

| Survey                  | Brief Description                                                                                                                                                                                                                                                                     | Timing                                                                                 |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Scoping survey          | An initial survey to identify any major constraints.                                                                                                                                                                                                                                  | 27 <sup>th</sup> and 28 <sup>th</sup> March 2024                                       |
| Bird surveys            | Breeding bird surveys within the substation<br>site, along the electricity line corridor, plus<br>500 m surrounding the same. Full details<br>of the survey methodology including<br>rationale for the survey area are included<br>in the baseline bird report in <b>Appendix C</b> . | 24 <sup>th</sup> April 2024<br>24 <sup>th</sup> May 2024<br>11 <sup>th</sup> June 2024 |
| Mammal dwelling surveys | Further investigation (physical inspection<br>and trail cameras) of potential mammal<br>dwellings identified during scoping survey.                                                                                                                                                   | 18 <sup>th</sup> April 2024<br>2 <sup>nd</sup> May 2024                                |
| Extended habitat survey | A survey to map the habitats present within<br>the substation site and along the electricity<br>line route, along with other ecological<br>features, such as mammals, invertebrates,<br>and plants.                                                                                   | 22 <sup>nd</sup> and 23 <sup>rd</sup> August 2024<br>13 <sup>th</sup> January 2025     |
|                         | Proposed watercourse crossings were also<br>examined for signs / sightings of otter and<br>other aquatic features within 150 m of the<br>crossing.                                                                                                                                    |                                                                                        |

#### 3.5.2 Habitats

An overview is provided below for any habitats listed under Annex I of the Habitats Directive recorded during ecological surveys (**Table 3-4**) and during the desk study.

The dominant habitats within the electricity substation and electrical control unit locations are improved agricultural grassland, with some drainage ditches, treelines, hedgerows and conifer plantation present nearby also.

The electricity line route will be located almost entirely within heavily grazed improved agricultural grasslands and existing roads. Bounding habitats include hedgerows, treelines, conifer plantation, scrub, buildings, amenity grassland and recolonising bare ground.

No Annex I habitats were recorded within the project site and there are no desktop records of the same.

Previously mapped Annex I alluvial forest 91E0 and hydrophilous tall herb swamp 6430 habitats are located c. 18 km downstream from the nearest watercourse crossing (NPWS, 2011). The distribution of Annex I water courses of plain to montane levels 3260 habitat is not fully known (NPWS, 2011) and so could be present downstream of the project site.

#### 3.5.3 Species

An overview is provided below for any QI birds, birds listed under Annex I of the Birds Directive, plants and animals listed under Annexes II and IV of the Habitats Directive, and invasive or non-native species (INNS) recorded during ecological surveys (**Table 3-4**) and during the desk study. Desktop records of QI aquatic receptors recorded downstream of the project are also presented.

The project is shown in Figure 1 within **Appendix A**.

| Table 3-4: QI, SCI and Invasive Species Identified within the Receiving Environment of | f |
|----------------------------------------------------------------------------------------|---|
| the Project Site                                                                       |   |

| Species                                                                                                                  | Record Details                                                                                                                                                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Box honeysuckle<br><i>Lonicera nitida</i>                                                                                | Non-native box honeysuckle was recorded along hedgerows adjacent to the electricity line route (local road L7117) during field surveys.                                                                                                                                         |
| Montbretia<br>Crocosmia x<br>crocosmiiflora                                                                              | Non-native montbretia was recorded during field surveys within verges adjacent to the route of the electricity line (unnamed local road and adjacent to the Shankill 14 first-order watercourse; north of the substation site).                                                 |
| Himalayan balsam<br>Impatiens<br>glandulifera                                                                            | Himalayan balsam was recorded during field surveys near a tributary<br>of the Shankill 14 just north of the substation site. This species is<br>listed on the Third Schedule of the European Communities (Birds<br>and Natural Habitats) Regulations 2011-2021 (S.I. 477/2011). |
| Salmonberry Rubus spectabilis                                                                                            | Salmonberry was recorded during field surveys within hedgerows<br>adjacent to the electricity line route (local road L7117). This species<br>is listed on the Third Schedule of the European Communities (Birds<br>and Natural Habitats) Regulations 2011-2021 (S.I. 477/2011). |
| Snowberry<br>Symphoricarpos<br>albus                                                                                     | Non-native snowberry was recorded during field surveys within hedgerows adjacent to the electricity line route (local road L7117).                                                                                                                                              |
| Otter Lutra lutra                                                                                                        | While no otter holts or other signs / sightings were recorded within 150 m of any watercourse crossing during surveys, NBDC records exist for the wider area within 10 km hectad S66.                                                                                           |
| White clawed<br>crayfish<br><i>Austropotamobius</i><br><i>pallipe</i> s                                                  | There was no evidence of white-clawed crayfish within 150 m of any watercourse crossing and the watercourses were generally extremely shallow and highly modified. There are desktop records of white-clawed crayfish 4.6 km downstream from the nearest watercourse crossing.  |
| Brook lamprey<br>Lampetra planeri,<br>river lamprey<br>Lampetra fluviatilis,<br>and sea lamprey<br>Petromyzon<br>marinus | Desktop records exist of juvenile brook or river lamprey ammocetes<br>and a small sample of sea lamprey c. 8 km downstream (King, 2006)<br>and lamprey (brook or river) 11.5 km downstream (IFI, 2002) from<br>the nearest watercourse crossing.                                |
| Twaite shad <i>Alosa</i><br><i>fallax</i>                                                                                | Desktop records exist for this species 32 km downstream of the nearest watercourse crossing.                                                                                                                                                                                    |

| Species                                                         | Record Details                                                                                                                                                             |
|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Atlantic salmon<br>Salmo salar                                  | This species has been recorded c. 11.2 km downstream of the nearest watercourse crossing (Delanty, et al., 2017) (IFI, 2002).                                              |
| Desmoulin's whorl<br>snail <i>Vertigo</i><br><i>moulinsiana</i> | NBDC records exist for the wider area within 100 m grid square S702503 c. 13.3 km downstream from the nearest watercourse crossing.                                        |
| Freshwater pearl<br>mussel<br>Margaritifera<br>margaritifera    | Article 17 data (NPWS, 2019) exists for this species 15 km downstream of the nearest watercourse crossing and this species has been assumed to be present as a precaution. |

#### 3.6 Potential Impacts of the Project on the Receiving Environment

The potential impacts of the project on the receiving environment at source are set out in **Table 3-5** relative to the following criteria:

- Habitat destruction / fragmentation / deterioration;
- Surface water run-off carrying suspended silt and contaminants, into local watercourses;
- Project related activities (noise, vibration, lighting, human presence, structures, etc.) leading to disturbance / displacement of species;
- Project related activities leading to a reduction in species populations / density;
- Air pollution due to dust and other airborne emissions; and
- Disturbance and potential spread of invasive species during the proposed works

## Table 3-5: Identification of sources for impacts arising from the project that havepotential for interactions with the receiving environment<sup>5</sup>

| Project Features                                       | Spatial and Temporal Scale of Project Interactions                                                                                                                                                                                                                                                                                                             |
|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Habitat destruction / fragmentation<br>/ deterioration | <b>Construction Phase</b><br>There will be direct habitat loss of habitats within the<br>project site. This could lead to fragmentation of key<br>habitats to be considered in the overall assessment.<br>This is likely to be a permanent impact at the<br>infrastructure locations, but some areas of habitat loss<br>will be temporary during construction. |

<sup>&</sup>lt;sup>5</sup> Assessment of Plans and Projects significantly affecting Natura 2000 Sites: Methodological guidance on the provisions of Article 6(3) and (4) of the Habitats Directive 92/43/EEC', (European Commission, 2021), the likely impacts of the project are set out relative to the following project features: size (e.g. in relation to direct land-take); overall affected area including the area affected by indirect impacts (e.g. noise, turbidity, vibrations); physical changes in the environment (e.g. modification of riverbeds or morphology of other water bodies, changes in the density of forest cover); changes in the intensity of an existing pressure (e.g. increase in noise, pollution or traffic); resource requirements (e.g. water abstraction, mineral extraction); emissions (e.g. nitrogen deposition) and waste (and whether they are disposed of on land, water or in the air); transportation requirements (e.g. access roads); duration of construction, operation, decommissioning, etc.; temporal aspects (timing of the different stages of a plan or project)



| Project Features                                                | Spatial and Temporal Scale of Project Interactions                                                                                                                                                                                                                                                                                                                         |
|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                 | Operational Phase                                                                                                                                                                                                                                                                                                                                                          |
|                                                                 | There are no sources for impacts with regard to direct habitat loss during operational phase.                                                                                                                                                                                                                                                                              |
|                                                                 | Decommissioning Phase                                                                                                                                                                                                                                                                                                                                                      |
|                                                                 | The decommissioning phase is likely to result in some<br>minor habitat loss, mainly due to the removal of the<br>electrical control unit and its associated compound. This<br>is likely to be short term.                                                                                                                                                                  |
| Surface water run-off carrying                                  | Construction Phase                                                                                                                                                                                                                                                                                                                                                         |
| suspended silt and contaminants,<br>into local watercourses.    | There will be increased volumes of surface water runoff<br>carrying suspended silt and contaminants from<br>excavations and the storage of stockpiled materials,<br>leakage of oils/fuel from site vehicles, spillage during<br>refuelling operations, and leakage from chemical, waste<br>and fuel storage areas. These sources will be temporary<br>during construction. |
|                                                                 | Operational Phase                                                                                                                                                                                                                                                                                                                                                          |
|                                                                 | There will be a risk of hydrocarbon / oil discharges and wastewater pollution during the operational phase. These sources will be long-term.                                                                                                                                                                                                                               |
|                                                                 | Decommissioning Phase                                                                                                                                                                                                                                                                                                                                                      |
|                                                                 | There will be the same sources for impacts as for the construction phase but of reduced magnitude.                                                                                                                                                                                                                                                                         |
| Changes to groundwater quality,                                 | Construction Phase                                                                                                                                                                                                                                                                                                                                                         |
| yield and / or flow paths.                                      | There could be some changes to groundwater quality<br>from the same surface water sources for impacts<br>outlined above. These sources will be temporary during<br>construction.                                                                                                                                                                                           |
|                                                                 | Operational Phase                                                                                                                                                                                                                                                                                                                                                          |
|                                                                 | There could be some impacts on groundwater during the operational phase as described for surface water impacts above.                                                                                                                                                                                                                                                      |
|                                                                 | Decommissioning Phase                                                                                                                                                                                                                                                                                                                                                      |
|                                                                 | There are the same sources for impacts with regard to groundwater during the decommissioning phase as for the construction phase, but of reduced magnitude.                                                                                                                                                                                                                |
| Related activities (noise, vibration, lighting, human presence, | Construction Phase                                                                                                                                                                                                                                                                                                                                                         |

| Project Features                                                         | Spatial and Temporal Scale of Project Interactions                                                                                                                                                                                                                                           |
|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| structures, etc) leading to<br>disturbance / displacement of<br>species. | There will be additional noise, vibration, lighting, human<br>presence and additional structures present during the<br>construction phase, which could lead to disturbance /<br>displacement of species. These sources will be<br>temporary during construction.<br><b>Operational Phase</b> |
|                                                                          | There will be lighting associated with the electricity<br>substation and a low level of human presence. These<br>sources will be long-term for the operational phase.                                                                                                                        |
|                                                                          | Decommissioning Phase                                                                                                                                                                                                                                                                        |
|                                                                          | As for construction phase.                                                                                                                                                                                                                                                                   |
| Related activities leading to a                                          | Construction Phase                                                                                                                                                                                                                                                                           |
| reduction in species populations / density.                              | There will be additional noise, vibration, lighting, human<br>presence and additional structures present during the<br>construction phase, which could lead to a reduction in<br>species populations / density. These sources will be<br>temporary during construction.                      |
|                                                                          | Operational Phase                                                                                                                                                                                                                                                                            |
|                                                                          | There will be lighting associated with the electricity<br>substation and a low level of human presence. These<br>sources will be long-term for the operational phase.                                                                                                                        |
|                                                                          | Decommissioning Phase                                                                                                                                                                                                                                                                        |
|                                                                          | As for construction phase.                                                                                                                                                                                                                                                                   |
| Air pollution due to dust and other                                      | Construction Phase                                                                                                                                                                                                                                                                           |
| airborne emissions.                                                      | There will be some dust and pollutants generated during<br>the construction phase. These sources of impacts will be<br>temporary.                                                                                                                                                            |
|                                                                          | Operational Phase                                                                                                                                                                                                                                                                            |
|                                                                          | There are no sources for impacts with regard to air pollution during the operational phase.                                                                                                                                                                                                  |
|                                                                          | Decommissioning Phase                                                                                                                                                                                                                                                                        |
|                                                                          | As for construction phase but lower in magnitude.                                                                                                                                                                                                                                            |
| Disturbance and potential spread                                         | Construction Phase                                                                                                                                                                                                                                                                           |
| of invasive species during the proposed works.                           | There are invasive and non-native species present near<br>watercourse crossings. The proposed works could<br>accidentally spread invasive species. The sources for<br>these impacts will be temporary.                                                                                       |



| Project Features | Spatial and Temporal Scale of Project Interactions                                                                             |
|------------------|--------------------------------------------------------------------------------------------------------------------------------|
|                  | <b>Operational Phase</b><br>There are no sources for impacts with regards to<br>invasive species during the operational phase. |
|                  | <b>Decommissioning Phase</b><br>As for construction phase but lower in magnitude.                                              |

### 4.0 Stage 1: Screening

This section of the report examines if the project is likely to have a significant effect upon European sites, either alone or in combination with other plans or projects.

# 4.1 Pathways – Hydrological, Hydrogeological and Ecological Connections

NPWS guidelines (NPWS, 2010) suggest that a 15 km study area is adopted. However, the Office of the Planning Regulator's Practice Note PN01 (OPR, 2021) suggests a case-by-case basis is undertaken when assessing the potential for source-receptor connectivity between a project and European sites. Our approach considers general ecological connectivity relating to movement patterns of mobile species, landscape biogeography, hydrological and hydrogeological connections (further details below and in **section 2.7**).

#### 4.1.1.1 Ecological Connections

A population of a mobile species that is a qualifying interest of a European site could also use habitat within or in the vicinity of a project site. If such a population is sometimes present within a project site, it is ecologically connected to the relevant European site. For example, ecological connections may include populations of birds, mammals, migratory fish and other species form the QFs of a European site.

Other examples of potential ecological connections include habitat connections either directly or as 'stepping stones'. Also, a project site may support a population of the same species as within a connected European site which occasionally exchange individuals. Furthermore, a project site may support populations of species which are prey / food or hosts to the QFs of a European site.

While an initial 15 km study area was adopted for SACs, a different approach was undertaken for SPAs.

In the absence of any specific European or Irish guidance in relation to establishing ecological connectivity to SPAs, NatureScot guidance (formerly Scottish Natural Heritage or 'SNH') (SNH, 2016) was consulted. This document provides guidance in relation to the identification of ecological connectivity between development sites and SPAs. The guidance takes into consideration the distances species may travel beyond the boundary of relevant SPAs and provides information on dispersal and foraging ranges of bird species which are frequently encountered when considering plans and projects. It goes on to state that *"in most cases the core range should be used when determining whether there is connectivity between the proposal and the Qls"*. Where SPAs and developments are separated by a greater distance than the core foraging ranges for the SPAs listed SCIs, there is no likely ecological connectivity to the development.



According to NatureScot guidance (SNH, 2016), the core foraging distances of wintering grey geese (e.g. greylag goose *Anser anser* and pink-footed goose *Anser brachyrhynchus*) from SPAs is 15-20 km. This represents the largest foraging range of all the species listed in this guidance document recorded in Ireland. It is acknowledged that information on core foraging ranges is not available for all Irish SCI species. In such cases, the 15-20 km core foraging range for greylag geese has been adopted as a precautionary approach.

Thus, all SPAs within 20 km from the Project were considered for ecological source-receptor connectivity.

#### 4.1.1.2 Hydrological, Hydrogeological and Airborne Connections

There is potential hydrological connectivity between any European site located downstream of the project site.

The Paulstown Stream (EPA Code 14P06), Moanmore 14 (EPA Code 14M24) and unnamed tributary (no EPA Code), Shankill 14 (EPA Code 14S30) and an unnamed tributary (no EPA Code) all intersect the route of the underground electricity line. These five first-order watercourses all eventually drain into the River Barrow and, ultimately, the Celtic Sea.

Hydrological connectivity beyond 15 km was also searched for using GIS to identify any European sites downstream of the project connected via watercourses.

There is potential hydrogeological connectivity between the project and any European site located within the same groundwater body.

The project is located within the Castlecomer, Shanragh and Bagenalstown Lower groundwater bodies.

Hydrogeoogical connectivity beyond 15 km was also searched for using GIS to identify any European sites within groundwater bodies shared with the project site.

As can be seen in **Table 3-5**, there are sources for effects from the construction and decommissioning phases relating to airborne emissions and other hydrological and hydrogeological interactions. Based on the characteristics of the sources for impacts identified, airborne emissions were considered using the approaches outlined in IAQM guidance (IAQM, 2019) (IAQM, 2014), which suggests that air pollution and dust from road schemes are only likely to be important for sensitive European sites within 200 m and 500 m, respectively.

#### 4.2 Identification of European Sites

European sites identified to have sources and pathways from effects are detailed in **Table 4-1** along with an examination of any relevant QFs. The locations of these sites, along with ecological, hydrological and hydrogeological details, are shown in **Appendix A, Figures 2a** to **2c** below.

#### Table 4-1: Designated Sites Considered for Screening

| Site Name<br>and Code                            |   | Qualifying Interests <sup>6</sup>                                                                                                                                                                                                                                                                                                                                                                                                                       | Conservation Objectives<br>in Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Direct Line<br>Distance<br>and<br>Direction to<br>Project Site | Analysis of Potential Effects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Likelihood<br>of<br>Significant<br>Effects |
|--------------------------------------------------|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| SACs & cSAC                                      | s |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                            |
| River Barrow<br>and River<br>Nore cSAC<br>002162 | • | Otter [1355]<br>Estuaries [1130]<br>Freshwater pearl<br>mussel [1029]<br>Salicornia and other<br>annuals colonising mud<br>and sand [1310]<br>Water courses of plain<br>to montane levels with<br>the Ranunculion<br>fluitantis and<br>Callitricho-Batrachion<br>vegetation [3260]<br>White-clawed crayfish<br>[1092]<br>Nore pearl mussel<br>Margaritifera durrovensis<br>[1990]<br>Petrifying springs with<br>tufa formation<br>(Cratoneurion) [7220] | <ul> <li>To restore the favourable conservation condition of sea lamprey, brook lamprey, river lamprey, twaite shad, Atlantic salmon, Atlantic salt meadows, otter, Mediterranean salt meadows, Nore freshwater pearl mussel, and old sessile oak woods.</li> <li>To maintain the favourable conservation status of Desmoulin's whorl snail, white-clawed crayfish, estuaries, mudflats and sandflats not covered by seawater at low tide, <i>Salicornia</i> and other annuals colonising in mud and sand, Killarney fern, water courses of</li> </ul> | 2.7 km<br>southeast                                            | Hydrological<br>There is a downstream hydrological connection<br>between the project and this cSAC via the<br>Paulstown stream (10 km instream distance),<br>Moanmore 14 (5 km instream distance) and<br>unnamed tributary (5 km instream distance),<br>Shankill 14 (4 km instream distance) and<br>unnamed tributary of the Shankill 14 (3.7 km<br>instream distance). As can be seen in <b>Table 3-5</b> ,<br>there are sources for effects on hydrologically<br>sensitive QIs recorded or likely to occur<br>downstream of the project include otter,<br>freshwater pearl mussel, water courses of plain<br>to montane levels, white-clawed crayfish,<br>Desmoulin's whorl snail, Twaite shad,<br>hydrophilous tall herb fringe communities,<br>Atlantic salmon, brook lamprey, river lamprey,<br>sea lamprey, and alluvial forests.<br>For all other habitats or species, they are either<br>terrestrial or estuarine and / or are not mapped<br>as downstream of the project site; therefore,<br>there is no pathway for effects. | Υ                                          |

<sup>&</sup>lt;sup>6</sup> For SPA SCIs, information is given on the type of population for which is the SCI is designated: r = reproducing, w = wintering, c = concentration and p = permanent. Qualifying features with possible connectivity to the project are shown **in bold**.

| Site Name<br>and Code | Qualifying Interests <sup>6</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Conservation Objectives<br>in Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Direct Line<br>Distance<br>and<br>Direction to<br>Project Site | Analysis of Potential Effects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Likelihood<br>of<br>Significant<br>Effects |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
|                       | <ul> <li>Atlantic salt meadows<br/>(<i>Glauco-Puccinellietalia</i><br/>maritimae) [1330]</li> <li>European dry heaths<br/>[4030]</li> <li>Desmoulin's whorl<br/>snail [1016]</li> <li>Twaite shad [1103]</li> <li>Hydrophilous tall herb<br/>fringe communities of<br/>plains and of the<br/>montane to alpine<br/>levels [6430]</li> <li>Old sessile oak woods<br/>with <i>llex</i> and <i>Blechnum</i><br/>in the British Isles [91A0]</li> <li>Mudflats and sandflats<br/>not covered by seawater<br/>at low tide [1140]</li> <li>Atlantic salmon [1106]</li> <li>River lamprey [1099]</li> <li>Alluvial forests with<br/><i>Alnus glutinosa</i> and<br/><i>Fraxinus excelsior</i><br/>(<i>Alno-Padion, Alnion</i><br/><i>incanae, Salicion</i><br/><i>albae</i>) [91E0]</li> </ul> | <ul> <li>plain to montane levels,<br/>European dry heaths,<br/>hygrophilous tall herb<br/>fringe communities,<br/>petrifying springs with<br/>tufa formation, and<br/>alluvial forests.</li> <li>The status of freshwater<br/>pearl mussel as a QI for<br/>this cSAC is currently<br/>under review. In the<br/>absence of a specific<br/>conservation objective,<br/>a generic objective to<br/>restore the favourable<br/>conservation status of<br/>freshwater pearl mussel<br/>has been assumed.</li> </ul> |                                                                | Hydrogeological<br>Appendix D shows that there is a<br>hydrogeological connection between the project<br>and this SAC via shared Bagnelstown Lower,<br>Castlecomer and Shanragh groundwater bodies.<br>As can be seen in Table 3-5, there are sources<br>for effects on hydrogeologically sensitive QIs in<br>this regard. However, no Annex I groundwater<br>dependent terrestrial ecosystem (GWDTE)<br>habitats have been mapped in the same<br>catchments as the project (NPWS, 2011), so<br>there is no pathway for effects.<br>Airborne<br>There is no strong connection for airborne<br>emissions and dust due to distance and<br>screening by natural features such as hedgerow<br>and treelines, so there is no pathway for effects.<br>Ecological<br>There is a downstream hydrological connection<br>between the project site and cSAC, which could<br>provide a pathway for mobile ex-situ QI species.<br>As can be seen in Table 3-5, there are sources<br>for effects on such QIs in this regard.<br>These QIs include otter, white-clawed crayfish,<br>Twaite shad, Atlantic salmon, brook lamprey,<br>river lamprey and sea lamprey. Freshwater pearl<br>mussel are mobile also during part of their life<br>cycle when the glochidia are present in mobile<br>salmonid hosts. |                                            |

| Site Name<br>and Code                  | Qualifying Inter                                                                                                                                                                                                        | rests <sup>6</sup>            | Conservation Objectives<br>in Summary                                                                                    | Direct Line<br>Distance<br>and<br>Direction to<br>Project Site | Analysis of Potential Effects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Likelihood<br>of<br>Significant<br>Effects |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
|                                        | <ul> <li>Brook lamprey<br/>Lampetra plane<br/>[1096]</li> <li>Mediterranean s<br/>meadows Junce<br/>maritimi [1410]</li> <li>Reefs [1170]</li> <li>Sea lamprey [1</li> <li>Killarney fern<br/>Trichomanes sp</li> </ul> | eri<br>salt<br>etalia<br>095] |                                                                                                                          |                                                                | According to the Conservation Objectives for this<br>cSAC (NPWS, 2011), there are no Nore pearl<br>mussel populations downstream of the project.<br>Desmoulin's whorl snail and Killarney fern either<br>have extremely limited mobility or are sessile;<br>therefore, there is no pathway for effects on<br>these species.<br><b>Invasive species</b><br>Invasive plant species were present adjacent to<br>the electricity line and nearby watercourses that<br>are hydrologically connected to the cSAC. As<br>can be seen in <b>Table 3-5</b> , there are sources for<br>effects on QI habitats in this regard, especially<br>for Himalayan balsam, which is spread along<br>watercourses. |                                            |
| Blackstairs<br>Mountains<br>SAC 000440 | <ul> <li>European dry he<br/>[4030]</li> <li>Northern Atlanti<br/>heaths with <i>Eric</i><br/>[4010]</li> </ul>                                                                                                         | c wet                         | • To maintain the<br>favourable conservation<br>condition of European<br>dry heaths and northern<br>Atlantic wet heaths. | 14.8 km east                                                   | <ul> <li>Hydrological and hydrogeological</li> <li>No downstream hydrological connectivity.</li> <li>No hydrogeological connection as SAC within different groundwater bodies (New Ross and Ballyglass vs. Castlecomer, Shanragh and Bagenalstown Lower).</li> <li>Therefore, no pathway for effects.</li> <li>Air</li> <li>There is no strong connection for airborne emissions and dust due to distance. Therefore, there is no pathway for effects.</li> <li>Ecological</li> </ul>                                                                                                                                                                                                          | Ν                                          |

| Site Name<br>and Code    |   | Qualifying Interests <sup>6</sup>           | C | onservation Objectives<br>in Summary                                                                                                             | Direct Line<br>Distance<br>and<br>Direction to<br>Project Site | Analysis of Potential Effects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Likelihood<br>of<br>Significant<br>Effects |
|--------------------------|---|---------------------------------------------|---|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
|                          |   |                                             |   |                                                                                                                                                  |                                                                | No ecological connectivity as the QIs are<br>habitats, which are located outside of the project<br>site. Therefore, there is no pathway for effects.<br><b>Invasive species</b><br>There are no hydro-, hydrogeological, airborne<br>or ecological pathways for the spread of invasive<br>species.                                                                                                                                                                                                                                                                     |                                            |
| SPAs                     |   |                                             |   |                                                                                                                                                  |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                            |
| River Nore<br>SPA 004233 | • | Kingfisher <i>Alcedo atthis</i><br>[A229] r | • | To maintain or restore<br>the favourable<br>conservation condition<br>of the bird species and<br>wetland habitat listed as<br>SCIs for this SPA. | 11.9 km west                                                   | Hydrological and hydrogeological<br>No downstream hydrological connectivity.<br>No hydrogeological connection as SPA within<br>different groundwater bodies (Rathdowney,<br>Castletown Gravel, Poormansbridge Gravels,<br>Durrow, Lisdowney, Kilkenny-Ballynakill Gravels,<br>Ballingarry, Clifden, Kilkenny, Stoneyford<br>Gravels, Bennettsbridge, Clifden Northwest,<br>Clifden South, Thomastown and Inistioge vs.<br>Castlecomer, Shanragh and Bagenalstown<br>Lower).<br>Therefore, no pathway for effects.<br>Air<br>There is no strong connection for airborne | Ν                                          |
|                          |   |                                             |   |                                                                                                                                                  |                                                                | emissions and dust due to distance and<br>screening by natural features such as hedgerow<br>and treelines. Therefore, no pathway for effects.<br><b>Ecological</b><br>No kingfisher were detected during surveys and<br>the watercourses were considered unsuitable for<br>foraging or nesting kingfisher (e.g. very shallow                                                                                                                                                                                                                                           |                                            |

| Site Name<br>and Code | Qualifying Interests <sup>6</sup> | Conservation Objectives<br>in Summary | Direct Line<br>Distance<br>and<br>Direction to<br>Project Site | Analysis of Potential Effects                                                                                                                                                                                                                                                                                                                                                                                  | Likelihood<br>of<br>Significant<br>Effects |
|-----------------------|-----------------------------------|---------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
|                       |                                   |                                       |                                                                | flows, highly modified, lack of suitable perches<br>and banks, and presence of cattle). Kingfisher<br>are predominantly riparian and territory size is 1<br>-3.5 km long (Fry, et al., 1999). There is a c. 55<br>km upstream hydrological connection between<br>the project and the SPA, which is considerably<br>larger then maximum kingfisher territory size.<br>Therefore, no strong pathway for effects. |                                            |
|                       |                                   |                                       |                                                                | Invasive species                                                                                                                                                                                                                                                                                                                                                                                               |                                            |
|                       |                                   |                                       |                                                                | There are no hydro-, hydrogeological, airborne<br>or ecological pathways for the spread of invasive<br>species. Therefore, no pathways for effects.                                                                                                                                                                                                                                                            |                                            |

#### 4.2.1 Likely Significant Effects For the Project 'Alone'

#### 4.2.1.1 No Likely Significant Effects

Likely Significant Effects on QF features of SACs and SPAs can be excluded at this stage without further assessment or mitigation. As can be seen in **Table 4-1**, these include:

- SACs: Blackstairs Mountains SAC.
- **SPAs:** River Nore SPA.

## 4.2.1.2 Downstream Hydrological, Hydrogeological and Ecological Connectivity

As can be seen in **Table 4-1**, the following European sites have downstream hydrological connectivity and hydrogeological connectivity to the project site, which also provides a pathway for the spread of invasive plant species and ecological connectivity for mobile exsitu QIs or SCIs, and require further consideration:

- SACs: River Barrow and River Nore cSAC.
- SPAs: None.

#### 4.2.2 Likely Significant Effects For the Project 'In Combination'

There is the potential for other plans and projects, specifically any other land use changes, to also impact upon the designated features of the European sites listed above in **sections 4.2.1.2**, and **Table 4-1**. Therefore, Likely Significant Effects cannot be excluded for these European sites when the Project is considered in combination with other plans and projects.

As set out in **Table 4-1** and **section 4.2.1.1** above there are no pathways for impacts between the project site and any other European sites. Likely Significant Effects can be excluded for all other European sites for the Project in combination with other Plans and Projects.

## 5.0 Conclusions

This AA Screening concludes that it cannot be excluded based on objective evidence and in view of best scientific knowledge, that there will not be any likely significant effects from the construction or operation activities from the project alone, and in combination with other plans or projects, on:

• River Barrow and River Nore cSAC.

Therefore, a Natura Impact Statement and associated mitigation measures are required.

This AA Screening also concludes that it can be excluded on the basis of objective evidence and in view of best scientific knowledge, that there will not be any likely significant effects from the Project alone, and in combination with other plans or projects, on:

- Blackstairs Mountains SAC;
- River Nore SPA; and
- Any other European sites.

## 6.0 Stage 2: Appropriate Assessment

#### 6.1 Step 1, Part 1: Information on the Project

Section 3.0 of this report details the project particulars, receiving environment and the identification of potential sources for impacts (Table 3-5).

### 6.2 Step 1, Part 2: Information on European Sites

The screening section (**section 4.0**) of this report identified one European site which could potentially be affected by the project.

The only European Site which was identified to have sources for potential effects with pathways to sensitive receptors was identified to be River Barrow and River cSAC.

The conservation objectives and known threats and pressures for the European sites for which a pathway to impact has been identified are provided in **Appendix B**. Only the QIs for which a potential impact has been identified are included and details on known threats and sensitives are also provided.

#### 6.3 Step 2, Part 1: Effects on the Integrity of European Sites 'Alone'

**Table 6-1** below characterises the types of effects that may affect the integrity of European sites screened in using the potential interactions of the project identified in section 3.6.

#### Table 6-1: Characterisation of Potential Adverse Effects Arising From Project

| Potential Adverse Effect                                                                     | Characterisation of Effect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | European<br>Site(s)<br>Screened In     | Relevant Qualifying<br>Interest(s) Screened<br>In                                                                                                                                                                                                                                                                     |
|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Habitat destruction / fragmentation / deterioration                                          | The closest European site is c. 2.7 km southeast of the project site. There are<br>no habitats within the project site that could act as ecological stepping stones.<br>Therefore, direct effects on habitats in terms of destruction, fragmentation and<br>deterioration can be excluded. Indirect effects via surface and groundwater are<br>discussed below.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N/A                                    | N/A                                                                                                                                                                                                                                                                                                                   |
| Surface water run-off carrying<br>suspended silt and contaminants<br>into local watercourses | During construction, and to a lesser extent, during operation (in the form of routine maintenance) and decommissioning of the project, there is potential for the release of the following into surface water:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | River Barrow<br>and River Nore<br>cSAC | Water courses of<br>plain to montane<br>levels                                                                                                                                                                                                                                                                        |
|                                                                                              | <ul> <li>suspended solids;</li> <li>nutrients; and</li> <li>other pollutants, (such as hydrocarbons, contaminated waste-water, and cement-based products).</li> <li>This has the potential to impact upon downstream aquatic habitat or species interest features, and / or groundwater-dependent habitat interest features.</li> <li>Suspended solids could reduce water clarity lowering the ability of plants to photosynthesize, resulting in die back. The increased availability of nutrients can lead to algal blooms (eutrophication) which can also limit light penetration, reducing growth and causing the death of plants in littoral zones. Hydrocarbon pollution affects leaf biochemistry, leading to decline in productivity and die back of vegetation (Arellano, et al., 2015).</li> <li>The hydrological connection is present for the electricity line and access track leading to the electricity substation. Therefore, having regard to the characteristics of the construction activities in the vicinity of the Paulstown stream, the Moanmore 14 and unnamed tributary, the Shankill 14 and an unnamed tributary of the same; the quantities of suspended solids, nutrients and other pollutants that could be released at the project site are likely to be very small and subject to high levels of dilution in the river system. Moreover, the period for potential release of suspended solids will be temporary,</li> </ul> |                                        | <ul> <li>Hydrophilous tall<br/>herb fringe<br/>communities</li> <li>Alluvial forests</li> <li>Desmoulin's whorl<br/>snail</li> <li>White-clawed<br/>crayfish</li> <li>Sea lamprey</li> <li>Brook lamprey</li> <li>Twaite shad</li> <li>Atlantic salmon</li> <li>Otter</li> <li>Freshwater pearl<br/>mussel</li> </ul> |

| Potential Adverse Effect                                                                                                                      | Characterisation of Effect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | European<br>Site(s)<br>Screened In     | Relevant Qualifying<br>Interest(s) Screened<br>In                                                                                                                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                               | occurring during the construction and, to a lesser extent, decommissioning works.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |                                                                                                                                                                                                                    |
| Changes to groundwater quality, yield and / or flow paths                                                                                     | There are no GWDTE mapped QI habitats or species mapped within the same groundwater catchments of the project. Therefore, changes to groundwater quality, yield and / or flow paths can be excluded.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N/A                                    | N/A                                                                                                                                                                                                                |
| Related activities (noise,<br>vibration, lighting, human<br>presence, structures, etc) leading<br>to disturbance / displacement of<br>species | No otter holts or couches were recorded within 150 m of any watercourse<br>crossing. However, there are desktop records for this species within the wider<br>area and it is possible that this species could utilise aquatic and terrestrial<br>habitats immediately adjacent to the project site in a limited way.<br>There is a risk that an otter could become trapped in excavations on land if no<br>appropriate exit is provided during construction and decommissioning. If<br>present within or nearby to the project, human activity could affect otter by<br>disturbing and/or displacing individuals, preventing foraging and leading to a<br>loss of condition.<br>All other mobile ex-situ QI species are unlikely to be affected by such related<br>activities. | River Barrow<br>and River Nore<br>cSAC | • Otter                                                                                                                                                                                                            |
| Related activities leading to a reduction in species populations / density                                                                    | The effects on water quality mentioned above could cause a reduction in prey species, which could prevent downstream QI species foraging and could lead to a loss of condition.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | River Barrow<br>and River Nore<br>cSAC | <ul> <li>Otter</li> <li>White-clawed<br/>crayfish</li> <li>Sea lamprey</li> <li>Brook lamprey</li> <li>River lamprey</li> <li>Twaite shad</li> <li>Atlantic salmon</li> <li>Freshwater pearl<br/>mussel</li> </ul> |
| Air pollution due to dust and other airborne emissions                                                                                        | The nearest European site is c. 2.7 km southeast of the project. As mentioned in <b>Table 4-1</b> , effects from dust and airborne emissions can be excluded owing to distance.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N/A                                    | N/A                                                                                                                                                                                                                |

| Potential Adverse Effect                                                             | Characterisation of Effect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | European<br>Site(s)<br>Screened In     | Relevant Qualifying<br>Interest(s) Screened<br>In                                                                                                         |
|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Disturbance and potential spread<br>of invasive species during the<br>proposed works | Box honeysuckle, montbretia, Himalayan balsam and salmonberry were<br>present adjacent to the electricity line route and so could accidentally be<br>spread if fragments enter the watercourses during the construction of the<br>project, especially Himalayan balsam, which thrives in the riparian zone of<br>watercourses and adjacent damp habitat (Beerling & Perrins, 1993). This could<br>negatively affect QI habitats by outcompeting native flora, especially habitats<br>that are present near watercourses. | River Barrow<br>and River Nore<br>cSAC | <ul> <li>Water courses of<br/>plain to montane<br/>levels</li> <li>Hydrophilous tall<br/>herb fringe<br/>communities</li> <li>Alluvial forests</li> </ul> |

# 6.4 Step 2, Part 2: Effects on the Integrity of European Sites 'In Combination'

As identified in **Table 6-1**, the project alone could have effects on European sites screened in via downstream hydrological connections and ecological connections through mobile exsitu riparian QI species. The following is an identification of projects and plans that could act in-combination with the project to give rise to effects on the integrity of European sites.

#### 6.4.1 Projects

A desktop-based planning search spanning 10 years was undertaken to identify projects that could give rise to 'in combination' effects on the European sites assessed in **section 6.3**.

For animal and invertebrate QI species, the search radius from each European site extended to the maximum territory size or core foraging distance.

The species QFs where significant effects are predicted for the project 'alone' are otter, sea lamprey, river lamprey, brook lamprey, Twaite shade, Atlantic salmon, white-clawed crayfish, Desmoulin's whorl snail and freshwater pearl mussel. Disturbance effects are only predicted for otter; therefore, otter maximum territory size was considered for the search radius, as the search distance for water-quality related effects is described below for QI habitats.

Maximum otter territory size is 13.2 km (Reid, et al., 2013). Therefore, a search length of 13.2 km of watercourses entering the River Barrow and River Nore cSAC was made (13.2 km upstream and downstream from where the project site's hydrological connection enters the cSAC). Projects adjacent to watercourses were focused on, as the QI species is not likely to be present far from watercourses, precluding possible cumulative effects.

For habitats, the search radius extended to the maximum instream distance where pollutants were likely to have an appreciable effect on the relevant European sites.

The QI habitats where significant effects are predicted are water courses of plain to montane levels, hydrophilous tall herb fringe communities, and alluvial forests. **Appendix D** confirmed that pollutants are likely to dilute after 10 km, so a search along 10 km sections of watercourses entering this cSAC was made (10 km upstream and downstream from where the project sites' hydrological connection enters the cSAC). While it is recognised that other projects could be release a larger volume of pollutants that could travel over longer instream distances, the very low chance of the project releasing pollutants into the cSAC, means this search area is appropriate.

Sources consulted included the EIA portal, EPA map viewer, An Bord Pleanála, Kilkenny County Council, Carlow County Council and Laois County Council planning lists.

The list of planning applications focussed on:

- Developments mentioned in consultation responses (Table 2-1);
- All infrastructural projects which are operational and utilising the same road networks that are proposed by the project;
- All planning applications within the search area outlined above where the planning status is to be determined, or where the construction period would likely coincide with the construction period of the project;
- Facilities with an Industrial Emissions Licence (IEL) connected to the European site via a watercourse;
- Urban Waste Water (UWW) treatment plants connected to the European site via a watercourse;

- Facilities with Section 4 Discharge Licences connected to the European site via a watercourse;
- All quarries within 2 km of the site boundary;
- The list of projects for 'in-combination' assessment from Chapter 1 of the accompanying EIAR is also included.

The planning applications returned from the desktop search are summarised in **Table 6-2** below with any pathways to European sites screened in highlighted. Only those pathways where 'in-combination' effects are possible are highlighted e.g. as the project only has a downstream hydrological connection to the River Barrow, planning applications with a downstream hydrological connection to the River Nore cannot contribute to in-combination effects.

It can be expected that all such projects and plans will be subject to an NIS assessment under the Habitats and Birds Directives.

For all the identified projects where an NIS / environmental report was available, the projects incorporated significant mitigation to prevent adverse impacts on the designated features of European sites.

#### Table 6-2: Other Projects Considered for 'In Combination' Effects

| Development Name                                       | Description                                                                                          | Planning Reference                                                                                                                                                                 | Pathway to European Site(s)                                                                                      |
|--------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| White Hill Wind Farm                                   | Permitted development of a 7-<br>no. turbine wind farm and<br>associated ancillary<br>infrastructure | An Bord Pleanála Reference ABP-315365-22                                                                                                                                           | Downstream hydrological connection<br>and potential ecological connection to<br>River Barrow and River Nore cSAC |
| Kellis-Kilkenny 110<br>kV overhead<br>electricity line | Existing overhead electricity transmission line                                                      | N/A                                                                                                                                                                                | Downstream hydrological connection<br>and potential ecological connection to<br>River Barrow and River Nore cSAC |
| Gortahile Wind Farm                                    | Existing 8 no. wind turbines and all associated infrastructure                                       | 04/935, 09/237, 09/618, and 10/7 [Co. Laois]                                                                                                                                       | Downstream hydrological connection<br>and potential ecological connection to<br>River Barrow and River Nore cSAC |
| Bilboa Wind Farm                                       | Permitted 5 no. wind turbines and all associated infrastructure                                      | 11/154 (An Bord Pleanála Reference PL01.240245),<br>21/15 and 22/340 (An Bord Pleanála Reference<br>PL01.318295) [Co. Carlow]                                                      | Downstream hydrological connection<br>and potential ecological connection to<br>River Barrow and River Nore cSAC |
| Bilboa Wind Farm<br>Grid Connection                    | Permitted c. 6.6 km of<br>underground electricity cables                                             | 20/180 [Co. Carlow] & 20/281 [Co. Laois]                                                                                                                                           | Downstream hydrological connection<br>and potential ecological connection to<br>River Barrow and River Nore cSAC |
| Pinewoods Wind<br>Farm                                 | Permitted 11 no. wind turbines<br>and all associated infrastructure                                  | 16/260 (An Bord Pleanála Reference PL11.248518) & 22/507 (An Bord Pleanála Reference ABP-316305-23) [Co. Laois]; and 17/62 (An Bord Pleanála Reference PL10.248392) [Co. Kilkenny] | Downstream hydrological connection<br>and potential ecological connection to<br>River Barrow and River Nore cSAC |
| Pinewoods Wind<br>Farm Grid Connection                 | Permitted 110kV electricity<br>substation and all associated<br>infrastructure                       | An Bord Pleanála Reference ABP-308448-20 [Co. Laois]                                                                                                                               | Downstream hydrological connection<br>and potential ecological connection to<br>River Barrow and River Nore cSAC |
| Seskin Wind Farm<br>and Grid Connection                | Proposed 7 no. wind turbines<br>and all associated infrastructure                                    | 24/60122 (An Bord Pleanála Reference ABP-320354-24)<br>[Co. Carlow]                                                                                                                | Downstream hydrological connection<br>and potential ecological connection to<br>River Barrow and River Nore cSAC |
| Seskin Wind Farm<br>Grid Connection                    | Proposed c. 20 km of<br>underground electricity cables<br>and ancillary works                        | 24/60210 [Co. Kilkenny]                                                                                                                                                            | Downstream hydrological connection<br>and potential ecological connection to<br>River Barrow and River Nore cSAC |

| Development Name                             | Description                                                                                     | Planning Reference                                                                                                                                  | Pathway to European Site(s)                                                                                      |
|----------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Freneystown Wind<br>Farm                     | Proposed up to 8 no. wind<br>turbines and all associated<br>infrastructure                      | An Bord Pleanála Reference ABP-317589-23 [Co.<br>Kilkenny]                                                                                          | Downstream hydrological connection<br>and potential ecological connection to<br>River Barrow and River Nore cSAC |
| Ballynalacken Wind<br>Farm                   | Proposed 11 no. wind turbines<br>and all associated infrastructure                              | An Bord Pleanála Reference ABP-312016-21 [Co.<br>Kilkenny]                                                                                          | Downstream hydrological connection<br>and potential ecological connection to<br>River Barrow and River Nore cSAC |
| Single Wind Turbine                          | Existing 1 no. wind turbine,<br>electrical substation, access<br>track and all ancillary works  | 13/322 (An Bord Pleanála Reference PL01.243964),<br>19/463, and 20/46 [Co. Carlow]                                                                  | No pathways                                                                                                      |
| Single Wind Turbine                          | Permitted 1 no. wind turbine,<br>electrical substation, access<br>track and all ancillary works | 21/254 (An Bord Pleanála Reference PL01.314517) [Co.<br>Carlow]                                                                                     | No pathways                                                                                                      |
| Firtree Developments<br>Industrial Buildings | Existing 4 no. industrial buildings                                                             | 19/313 [Co. Carlow]                                                                                                                                 | Downstream hydrological connection<br>and potential ecological connection to<br>River Barrow and River Nore cSAC |
| Kellymount Quarry<br>(Kilkenny Limestone)    | Existing quarry and all associated quarrying plant and machinery                                | 05/1927, 12/248, and 12/285 [Co. Kilkenny]                                                                                                          | No pathways                                                                                                      |
| Milford Quarries                             | Proposed development of a quarry on a c. 9.34 hectare site and associated operations            | Carlow County Council Planning Register Reference and 23/60042 (ABP-319198-24) and 23/60263 (An Bord Pleanála Reference ABP-320180-24) [Co. Carlow] | Downstream hydrological connection<br>and potential ecological connection to<br>River Barrow and River Nore cSAC |
| Kilkenny Limestone<br>Quarry (Oldleighlin)   | Existing quarry and all associated quarrying plant and machinery                                | An Bord Pleanála Reference PL01.SU0024 and 15/239.<br>[Co. Carlow]                                                                                  | Downstream hydrological connection<br>and potential ecological connection to<br>River Barrow and River Nore cSAC |
| Holdensrath Quarry<br>Limited                | Existing quarry and all associated quarrying plant and machinery                                | 19/519 and 20/190 [Co. Kilkenny]                                                                                                                    | No pathways                                                                                                      |
| McKeon Stone<br>Threecastles Quarry          | Existing quarry and all associated quarrying plant and machinery                                | 96/538, 04/1867, 15/673, 16/474 and 23/60097 [Co.<br>Kilkenny]                                                                                      | No pathways                                                                                                      |

| Development Name                     | Description                                                      | Planning Reference                                                                                                                                                                  | Pathway to European Site(s)                                                                                      |
|--------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Kilcarrig Quarries<br>Limited        | Existing quarry and all associated quarrying plant and machinery | 96/78, 96/319, 01/300, 07/354, 07/554, 07/556, 07/835, 08/502, 10/202, 10/282,11/206, 12/199, 13/92, 13/187, 14/67, 15/121, 16/180, 17/308, 18/395, 20/423, and 22/143 [Co. Carlow] | No pathways                                                                                                      |
| Oldleighlin Quarry                   | Existing quarry and all associated quarrying plant and machinery | 15/239, 17/64 and18/450, [Co. Carlow]                                                                                                                                               | Downstream hydrological connection<br>and potential ecological connection to<br>River Barrow and River Nore cSAC |
| Dan Morrissey &<br>Company           | Existing quarry and all associated quarrying plant and machinery | 92/137, 04/299, 07/769, 07/976, 10/130, 11/301, and 12/240 [Co. Carlow]                                                                                                             | Downstream hydrological connection<br>and potential ecological connection to<br>River Barrow and River Nore cSAC |
| MSD International<br>GmbH            | Permitted Sterile Manufacturing<br>Facility                      | 22/110 [Co. Carlow]                                                                                                                                                                 | Downstream hydrological connection<br>and potential ecological connection to<br>River Barrow and River Nore cSAC |
| Clogrennane Lime<br>Limited (Carlow) | IEL                                                              | Licence number P0400-03                                                                                                                                                             | No pathways                                                                                                      |
| Powerstown Landfill<br>Site          | IEL                                                              | Licence number W0025-4                                                                                                                                                              | Downstream hydrological connection<br>and potential ecological connection to<br>River Barrow and River Nore cSAC |
| O'Toole Composting<br>Limited        | IEL                                                              | Licence number W0284-01                                                                                                                                                             | Downstream hydrological connection<br>and potential ecological connection to<br>River Barrow and River Nore cSAC |
| Ballon Meats Limited                 | IEL                                                              | Licence number P0846-01                                                                                                                                                             | No pathways                                                                                                      |
| Fair Oak Foods Ltd                   | IEL                                                              | Licence number P0186-01                                                                                                                                                             | No pathways                                                                                                      |
| Mr Pat Roche                         | IEL                                                              | Licence number P0825-01                                                                                                                                                             | Downstream hydrological connection<br>and potential ecological connection to<br>River Barrow and River Nore cSAC |
| Hermitage Farms<br>Limited (Clifden) | IEL                                                              | Licence number P096-01                                                                                                                                                              | No pathways                                                                                                      |

| Development Name                                | Description         | Planning Reference       | Pathway to European Site(s)                                                                                      |
|-------------------------------------------------|---------------------|--------------------------|------------------------------------------------------------------------------------------------------------------|
| William Connolly &<br>Sons Unlimited<br>Company | IEL                 | Licence number P1069-01  | Downstream hydrological connection<br>and potential ecological connection to<br>River Barrow and River Nore cSAC |
| Knockbeg                                        | Section 4 Discharge | Licence number WP28      | Downstream hydrological connection<br>and potential ecological connection to<br>River Barrow and River Nore cSAC |
| Top Oil                                         | Section 4 Discharge | Licence number RP201     | Downstream hydrological connection<br>and potential ecological connection to<br>River Barrow and River Nore cSAC |
| Morrissey's –<br>Plazamount Ltd                 | Section 4 Discharge | Licence number RP204     | Downstream hydrological connection<br>and potential ecological connection to<br>River Barrow and River Nore cSAC |
| Kilkenny Limestone<br>Quarries                  | Section 4 Discharge | Licence number ENV/W/66  | Downstream hydrological connection<br>and potential ecological connection to<br>River Barrow and River Nore cSAC |
| Salma Nova Fish<br>Farm                         | Section 4 Discharge | Licence number RPS02     | Downstream hydrological connection<br>and potential ecological connection to<br>River Barrow and River Nore cSAC |
| William Connolly and Sons                       | Section 4 Discharge | Licence number ENV/W/114 | Downstream hydrological connection<br>and potential ecological connection to<br>River Barrow and River Nore cSAC |
| The Gowran Park<br>Race                         | Section 4 Discharge | Licence number ENV/W/111 | Downstream hydrological connection<br>and potential ecological connection to<br>River Barrow and River Nore cSAC |
| St. Colman's National<br>School                 | Section 4 Discharge | Licence number ENV/W/109 | No pathways                                                                                                      |
| Seamus Keaney                                   | Section 4 Discharge | Licence number ENV/W/101 | No pathways                                                                                                      |
| Ray Whelan Ltd                                  | Section 4 Discharge | Licence number W0158-01  | Potential hydrogeological connection<br>to River Barrow and River Nore cSAC<br>only                              |

| Development Name                | Description                      | Planning Reference | Pathway to European Site(s) |
|---------------------------------|----------------------------------|--------------------|-----------------------------|
| Agricultural developments       | Existing, permitted and proposed | Various            | Various                     |
| Residential dwellings           | Existing, permitted and proposed | Various            | Various                     |
| Commercial forestry plantations | Existing                         | N/A                | Various                     |

#### 6.4.2 Plans

The following plans have been reviewed and taken into consideration:

- National Biodiversity Action Plan 2023-2030 (NPWS, 2023);
- Southern Region Spatial and Economic Strategy 2020-2032 (RSES) (Government of Ireland, 2020);
- Kilkenny City & County Development Plan 2021-2027 (Kilkenny County Council, 2021);
- Carlow County Development Plan 2022-2028 (Carlow County Council, 2022); and
- Laois County Development Plan 2021-2027 (Laois County Council, 2021).

The review examined policies and objectives relating to designated sites for nature conservation, biodiversity, protected species, conservation of peatlands, sustainable land use, and preservation of surface water quality.

Key policies and development allocations are summarised in Appendix B.

#### 6.5 Step 2, Part 3 and Step 3: Implications for the Conservation Objectives and Effects on the Integrity of the European Sites

The unmitigated risks for the project undermining the conservation objectives and the likely effects on the integrity of screened in European sites are set out below in **Table 6-3**.

| European Site                       | Conservation Objective (Summary)                                                                                                                                                                                                                                                             | Risk of Undermining the Conservation Objectives and Affecting the Integrity of the European Site(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                            |
|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                     |                                                                                                                                                                                                                                                                                              | For the Project Alone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | For the Project In Combination with<br>Other Plans and Projects                                                                                                                                                                                                            |
| River Barrow and River Nore<br>cSAC | <ul> <li>Maintain the following for Desmoulin's whorl snail:</li> <li>distribution: occupied sites;</li> <li>population size: adults;</li> <li>population density;</li> <li>area of occupancy;</li> <li>habitat quality: vegetation; and</li> <li>habitat quality: soil moisture.</li> </ul> | Low risk<br>There are no works proposed within<br>the cSAC and the closest known<br>location of this species is<br>approximately 13.3 km downstream<br>from the project site, so no direct<br>effects on distribution, population,<br>range or habitat quality will occur.<br>Unmitigated, the project could<br>release suspended sediment,<br>nutrients and other pollutants into<br>watercourses connected with the<br>cSAC, resulting in a deterioration of<br>water quality and increase in<br>nutrients downstream. This could<br>have a negative effect on habitat<br>quality, which in turn could<br>negatively affect distribution,<br>populations and range. | Low risk but slightly elevated<br>Construction and / or decommissioning<br>works at other project sites may add to<br>the risk from the project alone.                                                                                                                     |
|                                     | Freshwater pearl mussel                                                                                                                                                                                                                                                                      | There are no conservation<br>objectives associated with this QI.<br>However, in the absence of specific<br>conservation objectives the generic<br>conservation objective to restore<br>favourable conservation status is<br>used.<br>Medium risk                                                                                                                                                                                                                                                                                                                                                                                                                      | There are no conservation objectives<br>associated with this QI.<br>However, in the absence of specific<br>conservation objectives the generic<br>conservation objective to restore<br>favourable conservation status is used.<br><b>Medium risk but slightly elevated</b> |

#### Table 6-3: Unmitigated Risk of Undermining the Conservation Objectives and Affecting the Integrity of Screened In European Sites

| European Site | Conservation Objective (Summary)                                                                                                                                                                                                                            | Risk of Undermining the Conservation Objectives and Affecting the Integrity of the European Site(s)                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                           |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
|               |                                                                                                                                                                                                                                                             | For the Project Alone                                                                                                                                                                                                                                                                                                                                                                                                                     | For the Project In Combination with<br>Other Plans and Projects                                                                                           |
|               |                                                                                                                                                                                                                                                             | There are no works proposed within<br>the cSAC and the closest known<br>location of this species is<br>approximately 15 km downstream<br>from the project site, so no direct<br>effects on distribution or population,<br>will occur.                                                                                                                                                                                                     | Construction and / or decommissioning<br>works at other project sites may add to<br>the risk from the project alone.                                      |
|               |                                                                                                                                                                                                                                                             | Unmitigated, the project could<br>release suspended sediment,<br>nutrients and other pollutants into<br>watercourses connected with the<br>cSAC, resulting in a deterioration of<br>water quality and increase in<br>nutrients downstream.                                                                                                                                                                                                |                                                                                                                                                           |
|               | <ul> <li>Maintain the following for white-clawed crayfish:</li> <li>Distribution;</li> <li>Population structure: recruitment;</li> <li>Negative indicator species;</li> <li>Disease:</li> <li>Water quality; and</li> <li>Habitat heterogeneity.</li> </ul> | Medium risk<br>There are no works proposed within<br>the cSAC and the closest known<br>location of this species is<br>approximately 4.6 km downstream<br>from the project site, so no direct<br>effects on distribution or population,<br>will occur.<br>Unmitigated, the project could<br>release suspended sediment,<br>nutrients and other pollutants into<br>watercourses connected with the<br>cSAC, resulting in a deterioration of | Medium risk but slightly elevated<br>Construction and / or decommissioning<br>works at other project sites may add to<br>the risk from the project alone. |
|               |                                                                                                                                                                                                                                                             | water quality and increase in nutrients downstream.                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                           |

| European Site | Conservation Objective (Summary)                                                                                                                                                                                                                   | Risk of Undermining the Conservation Objectives and Affecting the Integrity of the European Site(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                      |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
|               |                                                                                                                                                                                                                                                    | For the Project Alone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | For the Project In Combination with<br>Other Plans and Projects                                                      |
|               |                                                                                                                                                                                                                                                    | As there are no instream works<br>proposed, there is no mechanism by<br>which negative indicator species<br>(alien crayfish species) or disease<br>could be spread. Similarly, there is<br>no mechanism by which the project<br>could affect habitat heterogeneity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                      |
|               | Restore the following for sea lamprey:                                                                                                                                                                                                             | Medium risk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Medium risk but slightly elevated                                                                                    |
|               | <ul> <li>Distribution: extent of anadromy;</li> <li>Population structure of juveniles;</li> <li>Juvenile density in fine sediment;</li> <li>Extent and distribution of spawning habitat; and</li> <li>Availability of juvenile habitat.</li> </ul> | There are no works proposed within<br>the cSAC and the closest known<br>location of this species is<br>approximately 8 km downstream<br>from the project site, so no direct<br>effects on distribution or population,<br>will occur.<br>Unmitigated, the project could<br>release suspended sediment,<br>nutrients and other pollutants into<br>watercourses connected with the<br>cSAC, resulting in a deterioration of<br>water quality and increase in<br>nutrients downstream. This could<br>negatively affect the extent and<br>distribution of spawning habitat (sea<br>lamprey require clean gravels),<br>which could also negatively affect<br>juvenile density.<br>As there are no instream works<br>proposed, there is no mechanism by<br>which the project could act as a | Construction and / or decommissioning<br>works at other project sites may add to<br>the risk from the project alone. |

| European Site | Conservation Objective (Summary)                                                                                                                                                    | Risk of Undermining the Conservation Objectives and Affecting the Integrity of the European Site(s)                                                                                                                                                                                                                                                                                                                                |                                                                                                                      |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
|               |                                                                                                                                                                                     | For the Project Alone                                                                                                                                                                                                                                                                                                                                                                                                              | For the Project In Combination with<br>Other Plans and Projects                                                      |
|               |                                                                                                                                                                                     | barrier to juvenile lampreys<br>accessing the full extent of suitable<br>habitat.                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                      |
|               | Restore the following for brook lamprey:                                                                                                                                            | Medium risk                                                                                                                                                                                                                                                                                                                                                                                                                        | Medium risk but slightly elevated                                                                                    |
|               | <ul> <li>Distribution;</li> <li>Population structure of juveniles;</li> <li>Juvenile density in fine sediment;</li> <li>Extent and distribution of spawning habitat; and</li> </ul> | There are no works proposed within<br>the cSAC and the closest known<br>location of this species is<br>approximately 8 km downstream<br>from the project site, so no direct<br>effects on distribution or population,<br>will occur.                                                                                                                                                                                               | Construction and / or decommissioning<br>works at other project sites may add to<br>the risk from the project alone. |
|               | Availability of juvenile habitat.                                                                                                                                                   | Unmitigated, the project could<br>release suspended sediment,<br>nutrients and other pollutants into<br>watercourses connected with the<br>cSAC, resulting in a deterioration of<br>water quality and increase in<br>nutrients downstream. This could<br>negatively affect the extent and<br>distribution of spawning habitat<br>(brook lamprey require clean<br>gravels), which could also negatively<br>affect juvenile density. |                                                                                                                      |
|               |                                                                                                                                                                                     | As there are no instream works<br>proposed, there is no mechanism by<br>which the project could act as a<br>barrier to juvenile lampreys<br>accessing the full extent of suitable<br>habitat.                                                                                                                                                                                                                                      |                                                                                                                      |
|               | Restore the following for river lamprey:                                                                                                                                            | Medium risk                                                                                                                                                                                                                                                                                                                                                                                                                        | Medium risk but slightly elevated                                                                                    |

| European Site | Conservation Objective (Summary)                                                                                                                                                                                                                   | Risk of Undermining the Conservation Objectives and Affecting the Integrity of the European Site(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                        |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
|               |                                                                                                                                                                                                                                                    | For the Project Alone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | For the Project In Combination with<br>Other Plans and Projects                                                                                        |
|               | <ul> <li>Distribution: extent of anadromy;</li> <li>Population structure of juveniles;</li> <li>Juvenile density in fine sediment;</li> <li>Extent and distribution of spawning habitat; and</li> <li>Availability of juvenile habitat.</li> </ul> | There are no works proposed within<br>the cSAC and the closest known<br>location of this species is<br>approximately 8 km downstream<br>from the project site, so no direct<br>effects on distribution or population,<br>will occur.<br>Unmitigated, the project could<br>release suspended sediment,<br>nutrients and other pollutants into<br>watercourses connected with the<br>cSAC, resulting in a deterioration of<br>water quality and increase in<br>nutrients downstream. This could<br>negatively affect the extent and<br>distribution of spawning habitat (river<br>lamprey require clean gravels),<br>which could also negatively affect<br>juvenile density.<br>As there are no instream works<br>proposed, there is no mechanism by<br>which the project could act as a<br>barrier to juvenile lampreys | Construction and / or decommissioning<br>works at other project sites may add to<br>the risk from the project alone.                                   |
|               | Postoro the following for Tweite chade                                                                                                                                                                                                             | accessing the full extent of suitable habitat.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Low risk but slightly sloveted                                                                                                                         |
|               | <ul> <li>Restore the following for Twaite shad:</li> <li>Distribution: extent of anadromy;</li> <li>Population structure: age classes;</li> </ul>                                                                                                  | Low risk<br>There are no works proposed within<br>the cSAC and the closest known<br>location of this species is<br>approximately 32 km downstream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Low risk but slightly elevated<br>Construction and / or decommissioning<br>works at other project sites may add to<br>the risk from the project alone. |

| European Site | Conservation Objective (Summary)                                                                                                                                                         | Risk of Undermining the Conservatior the European Site(s)                                                                                                                                                                                                                                                                                                                                                                                                                        | n Objectives and Affecting the Integrity of                                                                          |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
|               |                                                                                                                                                                                          | For the Project Alone                                                                                                                                                                                                                                                                                                                                                                                                                                                            | For the Project In Combination with<br>Other Plans and Projects                                                      |
|               | <ul> <li>Extent and distribution of spawning habitat;</li> <li>Water quality: oxygen levels; and</li> <li>Spawning habitat quality: filamentous algae; macrophytes; sediment.</li> </ul> | from the project site, so no direct<br>effects on distribution or population,<br>will occur.<br>Unmitigated, the project could<br>release suspended sediment,<br>nutrients and other pollutants into<br>watercourses connected with the<br>cSAC, resulting in a deterioration of<br>water quality and increase in<br>nutrients downstream. This could<br>negatively affect the extent and<br>distribution of spawning habitat,<br>water quality and spawning habitat<br>quality. |                                                                                                                      |
|               | Restore the following for Atlantic salmon:                                                                                                                                               | Medium risk                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Medium risk but slightly elevated                                                                                    |
|               | <ul> <li>Distribution: extent of anadromy;</li> <li>Adult spawning fish;</li> <li>Salmon fry abundance;</li> <li>Out-migrating smolt abundance;</li> </ul>                               | There are no works proposed within<br>the cSAC and the closest known<br>location of this species is<br>approximately 11.2 km downstream<br>from the project site, so no direct<br>effects on distribution will occur.                                                                                                                                                                                                                                                            | Construction and / or decommissioning<br>works at other project sites may add to<br>the risk from the project alone. |
|               | <ul> <li>Number and distribution of redds; and</li> <li>Water quality.</li> </ul>                                                                                                        | Unmitigated, the project could<br>release suspended sediment,<br>nutrients and other pollutants into<br>watercourses connected with the<br>SAC, resulting in a deterioration of<br>water quality and increase in<br>nutrients downstream. This could<br>negatively affect the number and<br>distribution of redds (salmon spawn<br>in clean gravels) and in turn, salmon                                                                                                         |                                                                                                                      |

| European Site | Conservation Objective (Summary)                                                                                                                                                                                                                                                  | Risk of Undermining the Conservation Objectives and Affecting the Integrity of the European Site(s)                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                      |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
|               |                                                                                                                                                                                                                                                                                   | For the Project Alone                                                                                                                                                                                                                                                                                                                                                                                                                                   | For the Project In Combination with<br>Other Plans and Projects                                                      |
|               |                                                                                                                                                                                                                                                                                   | fry abundance, and the number of spawning adults,                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                      |
|               |                                                                                                                                                                                                                                                                                   | Out-migrating smolt abundance is<br>unlikely to be affected by the project<br>(estuarine pollution, predation and<br>sea lice are the most important<br>impacts).                                                                                                                                                                                                                                                                                       |                                                                                                                      |
|               | Restore the following for otter:                                                                                                                                                                                                                                                  | Low risk                                                                                                                                                                                                                                                                                                                                                                                                                                                | Low but slightly increased risk                                                                                      |
|               | <ul> <li>Distribution;</li> <li>Extent of terrestrial habitat;</li> <li>Extent of marine habitat;</li> <li>Extent of freshwater (river) habitat;</li> <li>Extent of freshwater (lake) habitat;</li> <li>Couching sites and holts; and</li> <li>Fish biomass available.</li> </ul> | There will be no works within the<br>cSAC. The project site is<br>hydrologically connected with the<br>cSAC. No spraints, couching sites or<br>holts were recorded within 150 m of<br>the watercourse crossings, so<br>couching site and holts will not be<br>affected.<br>Desktop records exist within the<br>wider area, suggesting the<br>watercourses provide suitable<br>foraging habitat for otter<br>downstream.<br>Activities undertaken during | Construction and / or decommissioning<br>works at other project sites may add to<br>the risk from the project alone. |
|               |                                                                                                                                                                                                                                                                                   | construction activities at the<br>watercourse crossings could result<br>in disturbance and displacement of<br>otter associated with the SAC, if<br>present. This could negatively affect<br>distribution, extent of terrestrial<br>habitat, extent of freshwater habitat                                                                                                                                                                                |                                                                                                                      |

| European Site | Conservation Objective (Summary)                                                                                                                                                                                                                                                               | Risk of Undermining the Conservation Objectives and Affecting the Integrity of the European Site(s)                                                                                                                                                                                                                                                                                                                                            |                                                                                                                      |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
|               |                                                                                                                                                                                                                                                                                                | For the Project Alone                                                                                                                                                                                                                                                                                                                                                                                                                          | For the Project In Combination with<br>Other Plans and Projects                                                      |
|               |                                                                                                                                                                                                                                                                                                | and provide a temporary barrier to connectivity.                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                      |
|               |                                                                                                                                                                                                                                                                                                | This is not considered to be likely as<br>this species not known to be<br>sensitive to disturbance (Chanin,<br>2003).                                                                                                                                                                                                                                                                                                                          |                                                                                                                      |
|               |                                                                                                                                                                                                                                                                                                | Water pollution via suspended<br>sediment could negatively affect fish<br>spawning gravels, vegetation or<br>invertebrates that fish forage on.<br>This could result in a reduction in<br>fish biomass available. While the<br>risk of water pollution entering the<br>cSAC is very low, ex situ otters<br>could travel up the connected<br>watercourses where the risk of<br>negative effects of water pollution<br>would be slightly higher. |                                                                                                                      |
|               | Maintain the following for water courses                                                                                                                                                                                                                                                       | Medium risk                                                                                                                                                                                                                                                                                                                                                                                                                                    | Medium but slightly increased risk                                                                                   |
|               | <ul> <li>of plain to montane levels:</li> <li>Habitat distribution;</li> <li>Habitat area;</li> <li>Hydrological regime: river flow;</li> <li>Hydrological regime: groundwater discharge;</li> <li>Substratum composition: particle range size;</li> <li>Water chemistry: minerals;</li> </ul> | There are no works proposed within<br>the cSAC, so no direct effects on<br>habitat distribution and area will<br>occur.<br>Unmitigated, the project could<br>release suspended sediment,<br>nutrients and other pollutants into<br>watercourses connected with the<br>cSAC, resulting in a deterioration of<br>water quality and increase in<br>nutrients downstream. This could                                                               | Construction and / or decommissioning<br>works at other project sites may add to<br>the risk from the project alone. |

| European Site | Conservation Objective (Summary)                                                                                                                                                                                      | Risk of Undermining the Conservation Objectives and Affecting the Integrity of the European Site(s)                                                                                                                                                                                                                       |                                                                                                                                                            |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               |                                                                                                                                                                                                                       | For the Project Alone                                                                                                                                                                                                                                                                                                     | For the Project In Combination with<br>Other Plans and Projects                                                                                            |
|               | <ul> <li>Water quality: suspended sediment;</li> <li>Water quality: nutrients;</li> <li>Vegetation composition: typical species; and</li> <li>Floodplain connectivity.</li> </ul>                                     | have a negative effect on<br>substratum composition, water<br>chemistry and quality, which could in<br>turn negatively affect vegetation<br>composition and habitat distribution<br>and area.<br>Himalayan balsam was recorded                                                                                            |                                                                                                                                                            |
|               |                                                                                                                                                                                                                       | directly adjacent to the electricity line<br>route. Unmitigated, construction<br>personnel could accidentally spread<br>this species along the electricity line<br>route and into connecting<br>watercourses. Seeds could enter the<br>cSAC and displace other plants,<br>negatively affecting vegetation<br>composition. |                                                                                                                                                            |
|               |                                                                                                                                                                                                                       | No instream works are proposed so<br>no effects on hydrological regime<br>and floodplain connectivity are<br>predicted.                                                                                                                                                                                                   |                                                                                                                                                            |
|               | <ul> <li>Maintain the following for hydrophilous tall herb fringe communities:</li> <li>Habitat distribution;</li> <li>Habitat area;</li> <li>Hydrological regime: flooding depth / height of water table;</li> </ul> | Medium risk<br>There are no works proposed within<br>the cSAC, and the nearest record of<br>this habitat type is c. 18 km<br>downstream, so no direct effects on<br>habitat distribution and area will<br>occur.                                                                                                          | Medium but slightly increased risk<br>Construction and / or decommissioning<br>works at other project sites may add to<br>the risk from the project alone. |
|               | Vegetation structure: sward height;                                                                                                                                                                                   | Unmitigated, the project could release suspended sediment, nutrients and other pollutants into                                                                                                                                                                                                                            |                                                                                                                                                            |

| European Site | Conservation Objective (Summary)                                                                                                                                                                        | Risk of Undermining the Conservation Objectives and Affecting the Integrity of the European Site(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                      |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
|               |                                                                                                                                                                                                         | For the Project Alone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | For the Project In Combination with<br>Other Plans and Projects                                                      |
|               | <ul> <li>Vegetation composition: broadleaf<br/>herb: grass ratio;</li> <li>Vegetation composition: typical<br/>species; and</li> <li>Vegetation composition: negative<br/>indicator species.</li> </ul> | watercourses connected with the<br>cSAC, resulting in a deterioration of<br>water quality and increase in<br>nutrients downstream. This<br>ultimately could have a negative<br>effect on vegetation composition and<br>habitat distribution and area.<br>Himalayan balsam was recorded<br>directly adjacent to the electricity line<br>route. Unmitigated, construction<br>personnel could accidentally spread<br>this species along the electricity line<br>route and into connecting<br>watercourses. Seeds could enter the<br>cSAC and displace other plants,<br>negatively affecting vegetation<br>composition (reduction in typical<br>species and increase in negative<br>indicator species).<br>No instream works are proposed so<br>no effects on hydrological regime |                                                                                                                      |
|               | Restore the following for alluvial forests:                                                                                                                                                             | are predicted.<br>Medium risk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Medium but slightly increased risk                                                                                   |
|               | <ul> <li>Habitat area;</li> <li>Habitat distribution;</li> <li>Woodland size;</li> <li>Woodland structure: cover and height;</li> </ul>                                                                 | There are no works proposed within<br>the cSAC, and the nearest record of<br>this habitat type is c. 18 km<br>downstream, so no direct effects on<br>habitat distribution, area, woodland<br>size and woodland structure will<br>occur.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Construction and / or decommissioning<br>works at other project sites may add to<br>the risk from the project alone. |

| European Site | Conservation Objective (Summary)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Risk of Undermining the Conservation Objectives and Affecting the Integrity of the European Site(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                 |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | For the Project Alone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | For the Project In Combination with<br>Other Plans and Projects |
|               | <ul> <li>Woodland structure: community diversity and extent;</li> <li>Woodland structure: natural regeneration;</li> <li>Hydrological regime: flooding depth / height of water table;</li> <li>Woodland structure: dead wood;</li> <li>Woodland structure: veteran trees;</li> <li>Woodland structure: indicators of local distinctiveness;</li> <li>Vegetation composition: native tree cover;</li> <li>Vegetation composition: typical species; and</li> <li>Vegetation composition: negative indicator species.</li> </ul> | Unmitigated, the project could<br>release suspended sediment,<br>nutrients and other pollutants into<br>watercourses connected with the<br>cSAC, resulting in a deterioration of<br>water quality and increase in<br>nutrients downstream. This<br>ultimately could have a negative<br>effect on vegetation composition,<br>and in turn habitat distribution and<br>area.<br>Himalayan balsam was recorded<br>directly adjacent to the electricity line<br>route. Unmitigated, construction<br>personnel could accidentally spread<br>this species along the electricity line<br>route and into connecting<br>watercourses. Seeds could enter the<br>cSAC and displace other plants,<br>negatively affecting vegetation<br>composition (reduction in typical<br>species and increase in negative<br>indicator species).<br>No instream works are proposed so<br>no effects on hydrological regime<br>are predicted. |                                                                 |

#### 6.6 Step 4: Mitigation Measures

Most of the mitigation measures outlined here relate to surface water runoff. The overarching objective of the proposed mitigation measures is to ensure that all surface water runoff is comprehensively attenuated such that no silt or sediment laden waters or deleterious material is discharged into the local drainage system. A Surface Water Management Plan (SWMP), incorporating the surface water drainage design has been prepared for the electricity substation and electrical control unit and incorporates the principles of Sustainable Drainage Systems (SuDS) through an arrangement of surface water drainage infrastructure.

While the SuDS, overall, is an amalgamation of a suite of drainage infrastructure; the overall philosophy is straightforward. In summary:-

- Clean water drains will be installed upslope of the works area to intercept clean surface water to prevent it becoming contaminated by silt/sediment from construction activities;
- All surface water runoff from construction areas will be directed to specially constructed downslope dirty water drains surrounding all areas of ground proposed to be disturbed (including areas for the temporary storage of material);
- The swales will direct runoff into stilling ponds and, subsequently, lagoon-type settlement ponds<sup>7</sup> where silt/sediment will be allowed to settle; and,
- Following the settlement of silt/sediment, clean water will be discharged to the local drainage network or to ground via buffered outfalls or level spreaders thus ensuring that no scouring occurs.

The suite of surface water drainage infrastructure will include *inter alia* upslope clean water drains, downslope dirty water drains, sedimats, flow attenuation and filtration check dams, stilling ponds, lagoon-type settlement ponds and buffered outfalls or level spreaders.

- The design criteria implemented as part of the SuDS are as follows:-
- To minimise alterations to the ambient site hydrology and hydrogeology;
- To provide settlement and treatment controls as close to the site footprint as possible and to replicate, where possible, the existing hydrological environment of the site;
- To minimise sediment loads resulting from the development run-off during the construction phase;
- To preserve greenfield runoff rates and volumes;
- To strictly control all surface water runoff such that no silt or other pollutants shall enter watercourses and that no artificially elevated levels of downstream siltation or no plumes of silt arise when substratum is disturbed;
- To provide settlement ponds to encourage sedimentation and storm water runoff settlement;
- To reduce stormwater runoff velocities throughout the site to prevent scouring and encourage settlement of sediment locally; and,
- To manage erosion and allow for the effective revegetation of bare surfaces.

<sup>&</sup>lt;sup>7</sup> The design of the lagoon-type sediment ponds shall generally accord with the principles Altmüller R. & Dettmer, R. (2006) Successful species protection measures for the Freshwater Pearl Mussel (Margaritifera margaritifera) through the reduction of unnaturally high loading of silt and sand in running waters – Experiences within the scope of the Lutterproject.

#### 6.6.1 Construction

Details of mitigation measures that will be implemented during the construction phase are provided below, with the Planning-Stage CEMP provided in **Appendix E**.

## 6.6.1.1 Earthworks (Removal of Vegetation Cover, Excavations and Stock Piling) Resulting in Suspended Solids Entrainment in Surface Water

#### **Substation and Electricity Control Unit**

The management of surface water runoff and subsequent treatment prior to release off-site will be undertaken during construction work as follows:-

- Prior to the commencement of earthworks, silt fencing will be placed down-gradient of the construction areas, as required, until the full range of construction phase measures are installed;
- These will be embedded into the local soils to ensure all site water is captured and filtered;
- Clean water drains will include check dams to control flow rates and avoid erosion or scouring of the drain;
- Water from the clean drains will be discharged by a buffered outfall or level spreader at greenfield runoff rates;
- Water will be discharged from the clean drains over natural grassland or to existing agricultural drains which will provide further filtration;
- All surface water runoff from works areas, excavations, stockpiles at the electricity substation site and electrical control unit site will be intercepted by downslope drains which will also include check dams;
- These dirty water drains will direct water to stilling ponds where water for treatment and attenuation;
- From the stilling ponds, water will be discharged to lagoon-type settlement ponds for final treatment. The settlement ponds will follow a design outlined by Altmuller and Dettmer (2006);
- The treated water will then be discharged via a buffered outfall or level spreader, at greenfield rates, over natural grassland which will provide additional filtration and treatment;
- The precise design, sizing and sitting of the drainage infrastructure will be confirmed as part of the post-consent detailed design process, however the design will be reflective of predicted rainfall levels with an appropriate allowance for climate change
- Daily monitoring of the excavation/earthworks, the water treatment and pumping system and the discharge areas will be completed by a suitably qualified person during the construction phase. All necessary preventative measures will be implemented to ensure no entrained sediment, or deleterious matter will enter the main drainage channel;
- If high levels of silt or other contamination is noted in the pumped water or the treatment systems, all construction works will be stopped. No works will recommence until the issue is resolved and the cause of the elevated source is remedied; and,
- Earthworks will take place during periods of low rainfall to reduce run-off and potential siltation of watercourses.

#### **Underground Electricity Line**

The majority of the underground electricity line is in excess of 50m from any nearby watercourse with the exception of the 5 no. watercourse crossings.

No in-stream works are required at the crossing locations as HDD is proposed, however due to the proximity of the watercourses to the construction works, there is a risk of surface water quality impacts during trench excavation work.

Mitigation measures which are outlined below will be implemented to ensure that silt laden or contaminated surface water runoff from the trenching work does not discharge directly to the water:-

- All existing dry drains that intercept the works area will be temporarily blocked downgradient of the works using temporary check dams/silt traps (e.g. straw bales);
- Clean water diversion drains will be installed upgradient of the works areas, as required;
- Check dams/silt fence arrangements (silt traps or straw bales) will be placed in all existing drains that have surface water flows and also along existing roadside drains; and,
- A double silt fence perimeter will be placed down-slope of works areas that are located inside the watercourse 50m buffer zones such as at watercourse crossing locations.

#### 6.6.1.2 Excavation Dewatering and Effects on Surface Water Quality

The management of excavation dewatering (pumping) and subsequent treatment prior to discharge into the drainage network will be undertaken as follows:

- Appropriate interceptor drainage, to prevent upslope surface runoff from entering excavations, will be installed as relevant;
- The interceptor drainage will not be discharged directly to surface waters to ensure that Greenfield runoff rates are mimicked;
- If required, pumping of excavation inflows will prevent build up of water in the excavation;
- All pumped water will be directed to the surface water drainage system for treatment prior to discharge. In the case of the electricity line, any pumped waters will be discharged over grassland to allow for filtration;
- There will be no direct discharge to local drains, and therefore no risk of hydraulic loading or contamination will occur;
- Daily monitoring of site excavations by the EM will occur during the construction phase. If high levels of seepage inflow occur, excavation work at this location will cease immediately and a geotechnical assessment undertaken; and,
- A mobile 'Siltbuster' or similar equivalent specialist treatment system will be available on-site for emergencies. Siltbusters are mobile silt traps that can remove fine particles from water using a proven technology and hydraulic design in a rugged unit. The mobile units are specifically designed for use on construction-sites and will be used as final line of defence, if required.

#### 6.6.1.3 Release of Hydrocarbons during Construction and Storage

Mitigation measures proposed to avoid release of hydrocarbons at the site are as follows:

- The volume of fuels or oils stored on site will be minimised. All fuel and oil will be stored in an appropriately bunded area within the temporary construction compounds. Only an appropriate volume of fuel will be stored at any given time. The bunded area will be roofed to avoid the ingress of rainfall and will be fitted with a storm drainage system and an appropriate oil interceptor;
- All bunded areas will have 110% capacity of the volume to be stored;
- On site re-fuelling of machinery will be carried out using a mobile double skinned fuel bowser. The fuel bowser, a double-axel custom-built refuelling trailer, will be re-filled at the temporary compound and will be towed around the site by a 4x4 jeep to where plant and machinery is located. The 4x4 jeep will also be fully stocked with fuel absorbent material and pads in the event of any accidental spillages. The fuel bowser will be parked on a level area in the construction compound when not in use and only designated trained and competent operatives will be authorised to refuel plant on site. Mobile measures such as drip trays and fuel absorbent mats will be used during all refuelling operations to avoid any accidental leakages;
- All plant and machinery used during construction will be regularly inspected for leaks and fitness for purpose;
- Spill kits will be readily available to deal with and accidental spillage;
- All waste tar material arising from road cuttings (from trenching or other works in public roads) will be removed off-site and taken to a licensed waste facility. Due to the possibility of contamination of soils and subsoils, it is not proposed to utilise this material for any reinstatement works or for storage within the spoil deposition areas; and
- An outline emergency plan for the construction phase to deal with accidental spillages is contained within the Planning-Stage CEMP (Appendix E). This emergency plan will be further developed prior to the commencement of development, and will be agreed with the Planning Authority as part of the detailed CEMP.

# 6.6.1.4 Groundwater and Surface Water Contamination from Wastewater Disposal

Measures to avoid contamination of ground and surface waters by wastewaters will comprise:-

- Self contained port-a-loos (chemical toilets) with an integrated waste holding tank will be installed at the temporary construction compound, maintained by the providing contractor, and removed from site on completion of the construction works;
- Water supply for the site office and other sanitation will be brought to site and removed after use to be discharged at a suitable off-site treatment location; and,
- No water will be sourced on the site during construction, nor will any wastewater be discharged to the site.

#### 6.6.1.5 Release of Cement-Based Products

The following mitigation measures are proposed to ensure that the release of cement-based products is avoided:-

• No batching of wet-cement products will occur on site. Ready-mixed concrete will be brought to site as required and, where possible, emplacement of pre-cast products, will take utilised;

- Where concrete is delivered on site, only the chute will be cleaned, using the smallest volume of water practicable. Chute cleaning will be undertaken at lined cement washout ponds within the temporary construction compound with waters being tankered off site and disposed of at an approved licensed facility. There will be no discharge of cement contaminated waters to the construction drainage system or to any drain;
- Weather forecasting will be used to ensure that prolonged or intense rainfall is not predicted during concrete pouring activities; and,
- The pour site will be kept free of standing water and plastic covers will be ready in case of sudden rainfall event.

# 6.6.1.6 Morphological Changes to Surface Water Courses & Drainage Patterns

Temporary silt fencing/silt trap arrangements (e.g. straw bales) will be placed within existing roadside/field drainage features along the electricity line route to remove any suspended sediments from the works area.

The trapped sediment will be removed and disposed of at an appropriate licenced facility. Any bare-ground will be re-seeded/reinstated immediately and silt fencing temporally left in place if necessary.

The following mitigation measures are proposed in respect of the installation of the culvert over the unnamed stream to the north of the electricity substation:-

- The stream crossing will be a clear span bridge (bottomless culvert) and the stream bed will remain undisturbed. No in-stream excavation works are proposed or anticipated as being required and therefore there will be no impact on the stream;
- At the time of construction, all guidance/best practice requirements of the Office of Public Works (OPW) or Inland Fisheries Ireland will be incorporated into the design/construction of the proposed watercourse/culvert crossings;
- As a further precaution, in-stream construction work (if required) will only be carried out during the period permitted by Inland Fisheries Ireland for in-stream works according to *Guidelines on Protection of Fisheries During Construction Works in and Adjacent to Waters* (2016) (i.e., July to September inclusive). This time period coincides with the period of lowest expected rainfall, and therefore minimum runoff rates. This will minimise the risk of entrainment of suspended sediment in surface water runoff, and transport via this pathway to surface watercourses (any deviation from this will be done in discussion with the IFI); and,
- The installation of the culvert will require a Section 50 license application to the OPW in accordance with the Arterial Drainage Act 1945. The stream crossing will be designed in accordance with OPW guidelines/requirements on applying for a Section 50 consent.

#### **Directional Drilling**

The following mitigation will be carried out during directional drilling works:

- Although no in-stream works are proposed, the drilling works will only be done over a dry period between July and September (as required by IFI for in-stream works) to avoid the salmon spawning season and to have more favourable (dryer) ground conditions;
- The crossing works areas will be clearly marked out with fencing or flagging tape to avoid unnecessary disturbance;

- There will be no storage of material/equipment or overnight parking of machinery inside a 10m buffer zone which will be imposed around the watercourses;
- Before any ground works are undertaken, double silt fencing will be placed upslope of the watercourse channel along the 10m buffer zone boundary;
- Additional silt fencing or straw bales (pinned down firmly with stakes) will be placed across any natural surface depressions/channels that slope towards the watercourse;
- Silt fencing will be embedded into the local soils to ensure all site water is captured and filtered;
- The area around the bentonite batching, pumping and recycling plant will be bunded using terram (as it will clog) and sandbags in order to contain any spillages;
- Drilling fluid returns will be contained within a sealed tank/sump to prevent migration from the works area;
- Spills of drilling fluid will be clean up immediately and stored in an adequately sized skip before been taken off-site;
- If rainfall events occur during the works, there will be a requirement to collect and treat small volumes of surface water from areas of disturbed ground (i.e. soil and subsoil exposures created during site preparation works);
- This will be completed using a shallow swale and sump down slope of the disturbed ground; and water will be pumped to a proposed percolation area at least 50m from the watercourses;
- The discharge of water onto vegetated ground at the percolation area will be via a silt bag which will filter any remaining sediment from the pumped water. The entire percolation area will be enclosed by a perimeter of double silt fencing;
- Any sediment laden water from the works area will not be discharged directly to a watercourse or drain;
- Works shall not take place during periods of heavy rainfall and will be scaled back or suspended if heavy rain is forecasted;
- Daily monitoring of the works area, the water treatment and pumping system and the percolation area will be completed by a suitably qualified person during the construction phase. All necessary preventative measures will be implemented to ensure no entrained sediment, or deleterious matter is discharged to the watercourse;
- If high levels of silt or other contamination is noted in the pumped water or the treatment systems, all construction works will be stopped. No works will recommence until the issue is resolved and the cause of the elevated source is remedied;
- On completion of the works, the ground surface disturbed during the site preparation works and at the entry and exit pits will be carefully reinstated;
- The silt fencing upslope of the river will be left in place and maintained until the works area has been fully reinstated;
- There will be no batching or storage of cement allowed at the watercourse crossing;
- There will be no refuelling allowed within 100m of the watercourse crossing; and,
- All plant will be checked for purpose of use prior to mobilisation at the watercourse crossing.

A Fracture Blow-out (Frac-out) Prevention and Contingency Plan will be prepared by the drilling contractor prior to construction and will include the following measures:-

- The drilling fluid/bentonite will be non-toxic and naturally biodegradable (i.e., Clear Bore Drilling Fluid or similar will be used);
- The area around the drilling fluid batching, pumping and recycling plants will be bunded using terram and/or sandbags to contain any potential spillage;
- A double row of silt fencing will be placed between the works area and the adjacent river;
- Spills of drilling fluid will be cleaned up immediately and transported off-site for disposal at a licensed facility;
- Adequately sized skips will be used where temporary storage of arisings are required;
- The drilling process/pressure will be constantly monitored to detect any possible leaks or breakouts into the surrounding geology or local watercourse;
- This will be gauged by observation and by monitoring the pumping rates and pressures. If any signs of breakout occur then drilling will be immediately stopped;
- Any frac-out material will be contained and removed off-site;
- The drilling location will be reviewed, before re-commencing with a higher viscosity drilling fluid mix; and,
- If the risk of further frac-out is high, a new drilling alignment will be sought at the crossing location.

#### 6.6.1.7 Otter

A pre-construction walkover survey of the project will be undertaken. This will search for otter holts/couches, which could change over time. If any are identified, then appropriate exclusion zone(s) will be implemented and construction activities timed to avoid sensitive periods, such as the breeding season. The following will be implemented to reduce the possibility of direct and indirect effects on otters:

- Limiting constructions works to daylight hours;
- Providing exit points for any excavations (e.g. escape planks or spoil runs) so otters do not become trapped; and
- A suitably qualified Ecologist will be employed for the duration of the construction period to make contractors aware of the otter sensitivities of the project and to undertake surveys for breeding or resting otters throughout the construction period, enforcing exclusion areas (150 m) as required. If in the unlikely event that exclusion zones cannot be implemented, advice will be sought from NPWS, and appropriate mitigation and compensation measures will be put in place and an application will be made to NPWS for a derogation licence if required.

#### 6.6.1.8 Invasive and Non-Native Species

The following will be implemented to avoid the accidental spread of any invasive or nonnative species:

An invasive species management plan will be developed and implemented. This will
include the following general prevention and containment measures and speciesspecific treatment measures below;

• A suitably qualified Ecologist will be employed for the duration of the construction period to make contractors aware of any invasive and non-native species sensitivities of the project and to undertake pre-construction surveys, enforcing any exclusion zones and mitigation measures as required.

#### **General Prevention Measures**

- Use of toolbox talks as part of site introduction to workers, including what to look out for and what procedures to follow if invasive species are observed;
- Signs will be used to warn workers of invasive species contamination;
- Only planting and sowing of native species if any reinstatement works are required or where invasive plant species are physically removed;
- Unwanted material contaminated with invasive species will be transported off-site by an appropriate licenced waste contractor and disposed of at a suitably licenced facility (NRA, 2010) guidelines; and
- Good hygiene practices will be adhered to including the removal of build-up of soil on equipment; keeping equipment clean; washing vehicles exiting the site using a pressure washer to prevent the transport of seeds; storing wastewater from washing facilities securely and treating to prevent spread of invasive species; checking footwear and clothing of workers for seeds, fruits or other viable material before leaving the site; any plant material arising from cleaning equipment, footwear and clothing will be carefully disposed of following (NRA, 2010) guidelines in such a manner not to cause the spread of invasive species.

#### **General Containment Measures**

- A pre-construction walkover survey of the project will be undertaken during the growing season (April to August). This will search for invasive and non-native species, which could change over time. The extent of invasive plant species will be physically marked out; and
- If any are identified, then appropriate exclusion zone(s) will be implemented. A 1 m buffer (except for the named species below) will be used to cordon off invasive species outside the works footprint.

#### Himalayan balsam

The following treatment options are recommended by TII (2020) guidance.

#### Chemical control

Chemical control of Himalayan balsam is possible and the use of glyphosate-based products can provide a very successful outcome. As the plant is an annual and the roots are extremely short, it is not necessary to hold off spraying until after flowering, as with deep rooted, rhizomatous and perennial species. Treatment in late May or early June will provide a good kill of treated plants but seeds from the previous season will germinate to replace the treated individuals and further spraying will be required in August or September. Since the seeds can remain dormant for more than one year, spraying, as in the first year will be required in the subsequent season. In Years 3 and 4, if no seeds have been deposited in the area, few plants should survive but monitoring and localised retreatment will be required.

If found near a watercourse crossing, bioactive-formulation glyphosate-based herbicide treatment is suitable.

#### Physical control

Mechanical control of Himalayan balsam is only likely to be effective where good access is available and the ground is smooth or level enough to permit either mowing or cutting. Where accessible, plants can be cut, mown or strimmed back to ground level before flowering in June. Do not cut earlier as this promotes greater seed production in plants that regrow. Unless the plant is cut to below the lowest node, it will re-sprout. Regular mowing will control the plant, provided the frequency of mowing is regular enough to prevent sprouting and flower formation. This should be repeated annually until complete control is achieved.

As the plants are very shallow-rooted, they can also be easily pulled from the ground by hand. Himalayan balsam has no spines, thorns or stinging cells and, hence, is not a danger to those doing the pulling, although it is always recommended to wear gloves as brambles and nettles commonly grow amongst the stands of Himalayan balsam plants. This control method, commonly referred to as 'balsam bashing', should be conducted in late April or early May when the plants are circa 1 m high. This puts less strain on the back of those pulling the plants. The pulled plants should be broken to discourage flowering, which can occur even with plants that have been removed from the ground. The broken plants can be placed in piles to rot naturally. Because seeds from the previous season will germinate and produce new plants following hand pulling in April or May, the exercise will need to be repeated later in the season, probably in August. As with herbicide spraying, hand pulling will be required the following year to account for the fact that seeds are capable of surviving for at least one year. Monitoring and localised hand pulling should be conducted for the following two years or as monitoring dictates.

Vegetative material can be disposed of by composting provided the compost will not be disturbed for a minimum of two years. Material may also be disposed of to a licensed landfill or incineration facility, or the material could be disposed of by shallow or deep burial.

#### Montbretia

The following treatment options are recommended by TII (2020) guidance.

#### Chemical control

Montbretia can be treated with herbicide during the active growing season. Due to the potential for re-infestation from seeds, corms and/or rhizome fragments, regular monitoring and follow-up treatment, as dictated by the monitoring, will be required over several years. If found near a watercourse crossing, similar bioactive-formulation glyphosate-based herbicide treatment is recommended as for Himalayan balsam (see above).

#### Physical control

Physical control of montbretia is difficult as individual corms easily break from their chains and can result in ready re-infestation or further spread. Where infestations are limited in extent, the entire stand can be excavated and buried or disposed of to a licensed landfill or incineration facility under licence. The most effective time to remove montbretia is before the flowering/seeding season. The corms are very hardy and are not suitable for composting. Due to the potential for re-infestation from corms, regular follow-up will be required over several years to deal with any re-growth.

#### Salmonberry

In the event of interaction of works with salmonberry, excavation of the entire root system is recommended, in addition to the general prevent and containment measures outlined earlier.

This must be done before the plants' seeds ripen in autumn and plant matter from this process can be disposed of at a licenced landfill site or may be buried on-site up to a depth of >2 m.

#### Snowberry

In the event of interaction of works with snowberry, excavation of the entire root system is recommended, in addition to the general prevent and containment measures outlined earlier.

This must be done before the plants' seeds ripen in autumn and plant matter from this process can be disposed of at a licenced landfill site or may be buried on-site up to a depth of >2 m.

#### 6.6.2 Operation

# 6.6.2.1 Progressive Replacement of Natural Surface with Lower Permeability Surfaces

#### Stormwater Runoff

Stormwater control measures are as follows:-

- During the operational phase, stormwater from the substation and electrical control unit compound areas will be discharged to local drains or to ground via soakaways following attenuation;
- Stormwater discharge from the project site will be limited to greenfield runoff rates, therefore there will be no increase in storm water runoff rates entering the local environment;
- Runoff from the compound areas will also be passed through an oil interceptor to prevent any discharge of hydrocarbons.

#### Hydrocarbons and Chemicals

Proposed mitigation measures for storage of fuel and chemicals are outlined as follows:-

- All storage containers will be labelled appropriately, including hazardous markings;
- All holding tanks will be constructed of material appropriate for fuel/chemical storage and will be bunded to at least 110% of the maximum tank volume or 25% of the total capacity of all the tanks within the bund, whichever is greatest;
- All bulk tanks will be located within an impervious bund;
- Bunds will be to standard specified in CIRIA Report 163 'Construction of bunds for oil storage tanks' and CIRIA Report C535 'Above-ground proprietary prefabricated oil storage tank systems;
- Barrels and bunded containers will be stored upright and internally where appropriate and always on drip trays or sump pallets;
- Appropriate spill kits will be available at all storage locations;
- All fuel/chemical storage facilities will be subject to weekly inspection; and,
- Leaking or empty drums will be removed from the site immediately and disposed of via a registered waste disposal contractor.

#### 6.6.3 Decommissioning

As in the construction phase, surface runoff control measures will be put in place during decommissioning works. The drainage system at the electrical control unit will remain operational during the decommissioning phase and will serve to treat any sediment laden surface water run-off due to the renewed disturbance of soils. Following decommissioning,

re-vegetation of excavated areas will be implemented as soon as practicable and monitored to ensure vegetation becomes fully established.

#### 6.6.4 Efficacy of Mitigation Measures

The environmental measures set out above are proven to work and provide certainty that the integrity of River Barrow and River Nore cSAC will not be affected by the construction, operation and decommissioning of the project.

These measures will ensure that suspended solids or other pollutants will not be discharged into surface waters during construction and there will be no effect on the water quality downstream of the project site. Similarly, there will be no accidental spread of invasive plant species.

The measures will also ensure that there is no appreciable disturbance or displacement to otter.

#### 6.6.5 Summary of Mitigation Measures

A summary of mitigation measures is provided in Table 6-4.

#### Table 6-4: Summary of Mitigation Measures, Responsibilities and Efficacy in Preventing Adverse Effects on European Sites

| Effect                                       | Mitigation<br>Measures                                                                                  | Responsibility<br>Implementation | Efficacy of<br>Mitigation       | Adverse Effect<br>on Integrity of<br>European Sites |
|----------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------|-----------------------------------------------------|
| Deterioration of water quality               | Site drainage<br>plan, surface<br>water<br>management plan<br>and water quality<br>management plan      | Contractor                       | Established and proven measures | No                                                  |
|                                              | Buffer zone                                                                                             | Contractor                       | Established and proven measures | No                                                  |
|                                              | Source, in-line<br>and treatment<br>controls                                                            | Contractor                       | Established and proven measures | No                                                  |
|                                              | Weather constraints                                                                                     | Contractor                       | Established and proven measures | No                                                  |
|                                              | Hydrocarbon,<br>wastewater and<br>cement<br>management                                                  | Contractor                       | Established and proven measures | No                                                  |
| Biosecurity                                  | Prevention and<br>containment<br>measures                                                               | Contractor, ECoW                 | Established and proven measures | No                                                  |
| Disturbance /<br>displacement of<br>QI otter | Preconstruction<br>surveys, working<br>hours, exclusion<br>zones and exits<br>from excavation<br>points | Contractor, ECoW                 | Established and proven measures | No                                                  |

# 7.0 Conclusion

This NIS contains information which the competent authority may consider in making its own conclusions and upon which it can determine that all reasonable scientific doubt has been removed as to the effects of the project on the integrity of the relevant European sites. The potential impacts that could arise from the project during the construction, operational and decommissioning phases are set out in this report and a proposed mitigation measures for the respective development phases is described with all mitigation measures being implemented in full.

With the identified mitigation measures in place, it can be concluded, beyond all reasonable scientific doubt that the project, either alone or in combination with other plans or projects, will not undermine the conservation objectives of any European sites or have any significant effects thereon. It can therefore be concluded that the project will not have an adverse effect on the integrity of any European site.

### 8.0 References

Arellano, P., Tansey, K., Baltzer, H. & Boyd, D., 2015. Detecting the effects of hydrocarbon pollution in the Amazon forest using hyperspectral satellite images. *Environmental Pollution*, Volume 205, pp. 225-239.

Beerling, D. & Perrins, J., 1993. Impatiens glanulifera Royle (Impatiens roylei Walp.). *Journal of Ecology*, 81(2), pp. 367-382.

Bengtsson, D. et al., 2014. Movements, Home-Range Size and Habitat Selection of Mallards During Autumn Migration. *PLOS ONE*, 9(6), p. e100764.

Burke, B. et al., 2021. Population size, breeding success and habitat use of Whooper Swan Cygnus cygnus and Bewick's Swan Cygnus columbianus bewickii in Ireland: results of the 2020 International Swan Census. *Irish Birds,* Volume 43, pp. 57-70.

Carlow County Council, 2022. Volume I: Carlow County Development Plan 2022-2028, s.l.: Carlow County Council.

Chanin, P., 2003. *Ecology of the European Otter. Conserving Natura 2000 Rivers. Series 10.,* Peterborough: English Nature.

Cook, A., Rushton, S., Allan, J. & Baxter, A., 2008. An evaluation of techniques to control problem bird species on landfill sites. *Environmental Management,* Volume 41, pp. 834-843.

Delanty, K. et al., 2017. *Fish Stock Assessment of the River Barrow Catchment.* 2015., Dublin: Inland Fisheries Ireland.

E. A., 2003. *Guidance for the control of invasive weeds in or near freshwater,* Bristol: Environment Agency.

EC, 2018. *Managing Natura 2000 sites: The provisions of Article 6 of the 'Habitats' Directive , Brussels: European Commission.* 

EC, 2020. *Guidance document on wind energy developments and EU nature legislation,* Brussels: European Commission.

EC, 2021. Assessment of plans and projects in relation to Natura 2000 sites -Methodological, Brussels: European Commission.

Fry, C., Fry, K. & Harris, A., 1999. *Kingfishers, beet-eaters and rollers.* London: Christopher Helm.

G. C. C., 2022. Galway County Development Plan 2022-2028, s.l.: Galway County Council.

Gillings, S., Fuller, R. & Sutherland, W., 2007. Winter field use and habitat selection by Eurasian Golden Plovers Pluvialis apricaria and Northern Lapwings Vanellus vanellus on arable fields. *Ibis,* pp. 509-520.

G. o. I., 2020. *Southern Region Spatial and Economic Strategy 2020-2032,* Dublin: Government of Ireland.

Goodship, N. & Furness, R., 2022. *Disturbance Distances Review: An updated literature review of disturbance distances of selected bird species. A report from MacAruthur Green to NatureScot,* Battleby: NatureScot.

Holt, C. et al., 2012. *Waterbirds in the UK 2010/11. The Wetland Bird Survey.*, s.l.: British Trust for Ornithology, Royal Society for the Protection of Birds, and Joint Nature Conservation Conservation Committee, in association with Wildfowl & Wetlands Trust.

IAQM, 2014. *Guidance on the assessment of dust from demolition and construction,* London: Institute of Air Quality Management.



IAQM, 2019. A guide to the assessment of air quality impacts on designated nature conservation sites - version 1.0, Lond: Institute of Air Quality Management.

IFI, 2002. Fish in Rivers Factsheet: River Barrow Catchment. Factsheet 2020/1, Dublin: IFI.

ISI, 2015. Best Practice Management Guidelines for Japanese Knotweed, s.l.: Invasive Species Ireland.

Kilkenny County Council, 2021. Volume I: Kilkenny City and County Development Plan 2021-2027, s.l.: Kilkenny County Council.

King, J., 2006. *The status and distribution of lamprey in the River Barrow SAC: Irish Wildlife Manuals No. 21,* Dublin: National Parks and Wildlife Service, Department of Environment, Heritage and Local Government.

Laois County Council, 2021. *Laois County Development Plan 2021-2027,* s.l.: Laois County Council.

L. C. C., 2021. Longford County Development Plan 2021-2027, s.l.: Longford County Council.

Legagneux, P. et al., 2009. Variation in home-range size and movements of wintering dabbling ducks. *Journal of Ornithology,* Volume 150, pp. 183-193.

Myrfyn, O. & Williams, G., 1976. Winter distribution and habitat requirements of Wigeon in Britain. *Wildfowl,* pp. 83-90.

NPWS, 2008. *Circular Letter NPWS 2/08 Use of Herbicide Spray on Vegetated Road Verges,* s.l.: National Parks and Wildlife Service.

NPWS, 2010. Appropriate Assessment of Plans and Projects in Ireland: Guidance for Planning Authorities., Dublin: National Parks and Wildlife Service.

NPWS, 2011. *Conservation Objectives: River Barrow and River Nore SAC 002162*, Dublin: NPWS, Department of Arts, Heritage and the Gaeltacht.

NPWS, 2011. Conservation Objectives: River Barrow and River Nore SAC 002162. Version 1, Dublin: National Parks and Wildlife Service, Department of Arts, Heritage and the Gaeltacht.

NPWS, 2015. *Site Synopsis: Lough Ree SPA 004064,* Dublin: National Parks and Wildlife Service, Department of Housing, Local Government and Heritage.

NPWS, 2016. *Conservation Objectives: Ballynamona Bog and Corklip Lough SAC 002339. Version 1,* Dublin: National Parks and Wildlife Services, Department of Arts, Heritage, Regional, Rural and Gaeltacht Affairs.

NPWS, 2016. *Conservation Objectives: Ballynamona Bog and Corklip Lough SAC 002339. Version 1.,* Dublin: National Parks and Wildlife Service, Department of Arts, Heritage, Regional, Rural and Gaeltacht Affairs.

NPWS, 2016. *Conservation Objectives: Lough Ree SAC 000440. Version 1,* Dublin: National Parks and Wildlife Service, Department of Arts, Heritage, Regional, Rural and Gaeltacht Affairs.

NPWS, 2018. *Conservation Objectives: Lough Funshinagh SAC 000611. Version 1,* Dublin: National Parks and Wildlife Service, Department of Culture, Heritage and the Gaeltacht.

NPWS, 2019. The Status of EU Protected Habitats and Species in Ireland. Volume 3: Species Assessments. Unpublished NPWS report, s.l.: NPWS.

NPWS, 2019. The Status of EU Protected Habitats and Species in Ireland. Volume 3: Species Assessments. Unpublished report., s.l.: NPWS.

NPWS, 2021. *Conservation Objectives: Castlehampson Esker SAC 001625. Version 1,* Dublin: National Parks and Wildlife Service, Department of Housing, Local Government and Heritage.

NPWS, 2022. *Conservation Objectives: Middle Shannon Callows SPA 004096. Version 1,* Dublin: National Parks and Wildlife Service, Department of Housing, Local Government and Heritage.

NPWS, 2022. *Conservation Objectives: River Shannon Callows SAC 000216. Version 1.,* Dublin: National Parks and Wildlife Service, Department of Housing, Local Government and Heritage.

NPWS, 2022. *Conservation Objectives: River Suck Callows SPA 004097. Version 1,* Dublin: National Parks and Wildlife Service, Department of Housing, Local Government and Heritage.

NPWS, 2022. *First Order Site-specific Conservation Objectives: Lough Ree SPA (004064),* Dublin: National Parks and Wildlife Service, Department of House, Local Government and Heritage.

NPWS, 2023. Ireland's 4th National Biodiversity Action Plan 2023-2030, Dublin: Government of Ireland.

NRA, 2010. The management of noxious wees and non-native invasive plant species on national road schemes, s.l.: National Roads Authority.

O. C. C., 2021. Offaly County Development Plan 2021-2027, s.l.: Offaly County Council.

OPR, 2021. OPR Practice Note PN01: Appropriate Assessment Screening for Development , s.l.: Office of the Planning Regulator.

Reid, N. et al., 2013. *National Otter Survey of Ireland 2010/12,* Dublin: National Parks and Wildlife Service, Department of Arts, Heritage and the Gaeltacht.

SLR, 2024. Moyvannan Bird Survey Report Non-Breeding Season 2023-24, s.l.: s.n.

SNH, 2016. Assessing Connectivity with Special Protection Areas (SPAs), Battleby: Scottish Natural Heritage.

T. C. C., 2022. *Tipperary County Development Plan 2022-2028,* s.l.: Tipperary County Council.

Thaxter, C. et al., 2012. Seabird foraging ranges as a preliminary tool for identifying candidate Marine Protected Areas. *Biological Conservation*, Volume 156, pp. 53-61.

TIDE, 2024. *TIDE Toolbox.* [Online] Available at: <u>https://www.tide-toolbox.eu/abouttidetoolbox/</u> [Accessed 26 08 2024].

TII, 2020. *The Management of Invasive Alien Plant Species on National Roads - Technical Guidance. GE-ENV-00105,* s.l.: Transport Infrastructure Ireland.

Triturus, 2024. Aquatic ecological assessment of the Cross River, northwest of Athlone, Co. Roscommon, s.l.: s.n.

U. E. A., 2013. *The Knotweed Code of Practice: Managing Japanese Knotweed on Development Sites. Version 3,* Bristol: UK Environment Agency.

White Hill Wind Limited, 2022. Environmental Impact Assessment Report, s.l.: s.n.

White Hill Wind Limited, 2022. NIS for White Hill Wind Farm, s.l.: s.n.

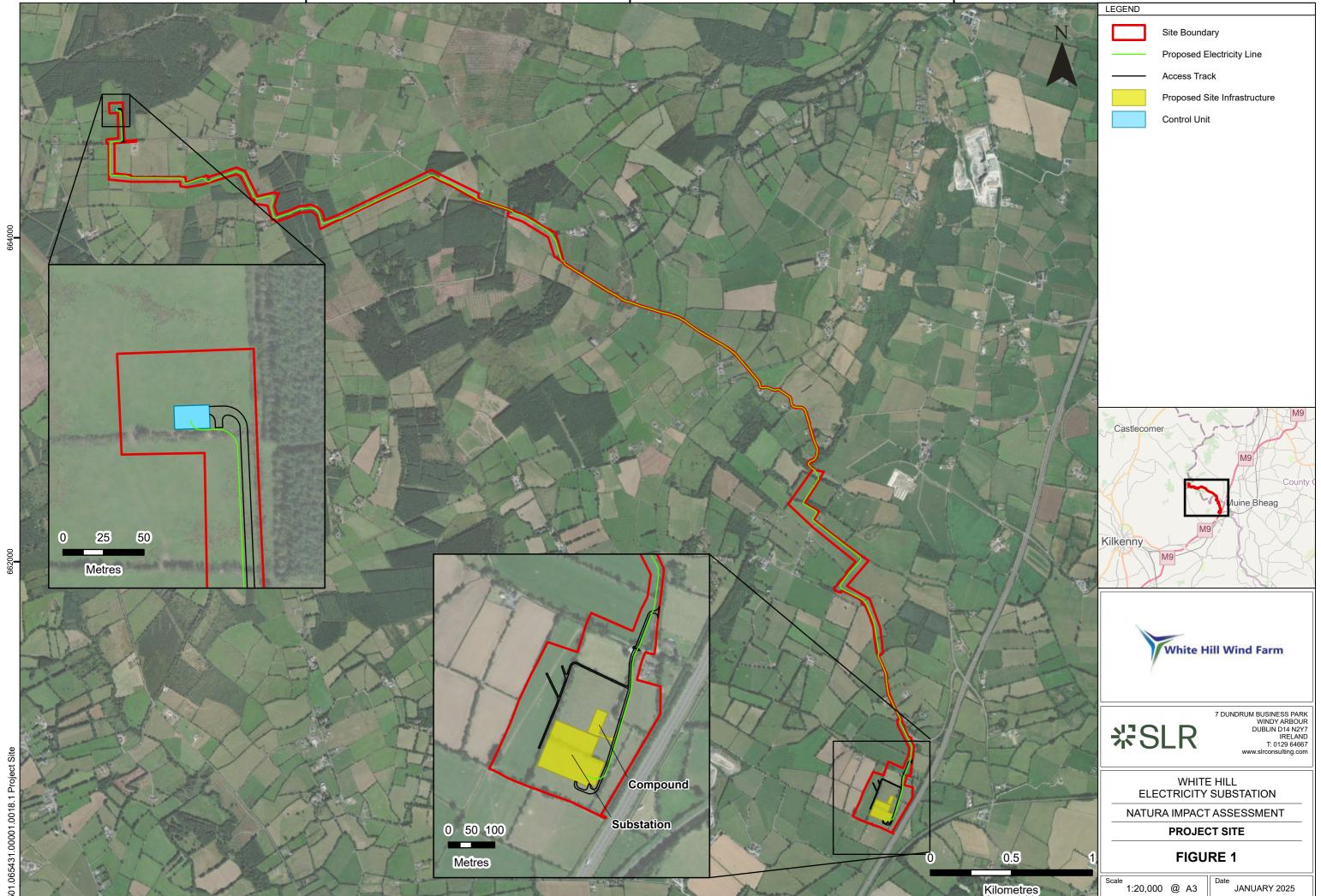
White Hill Wind Limited, 2024. White Hill Wind Farm Electricity Substation & Electricity Line Environmental Impact Report, s.l.: s.n.





# Appendix A Figures

## **Natura Impact Statement**


White Hill Wind Farm Electricity Substation & Electricity Line

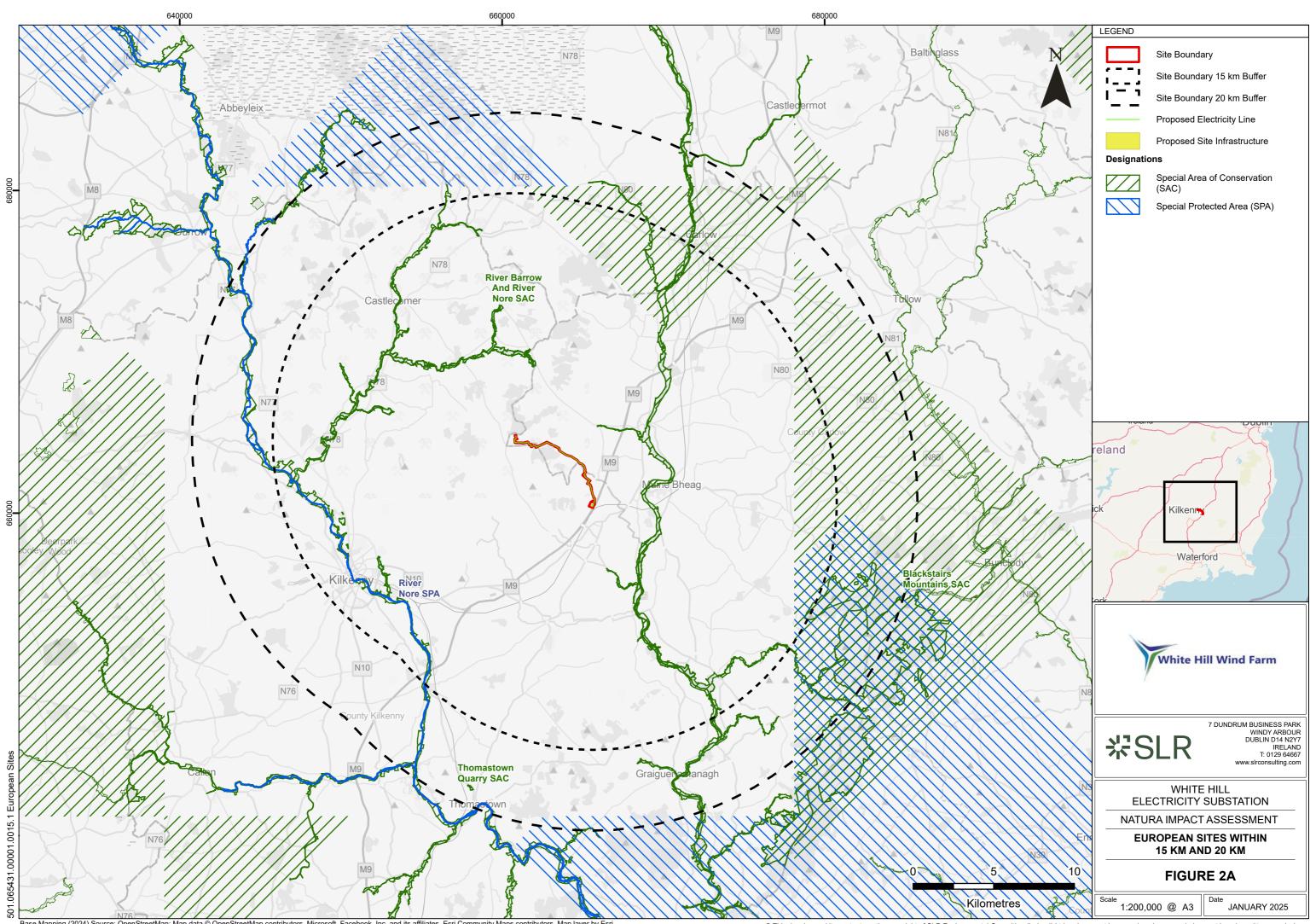
White Hill Wind Limited

SLR Project No.: 501.065427.00001

28 January 2025

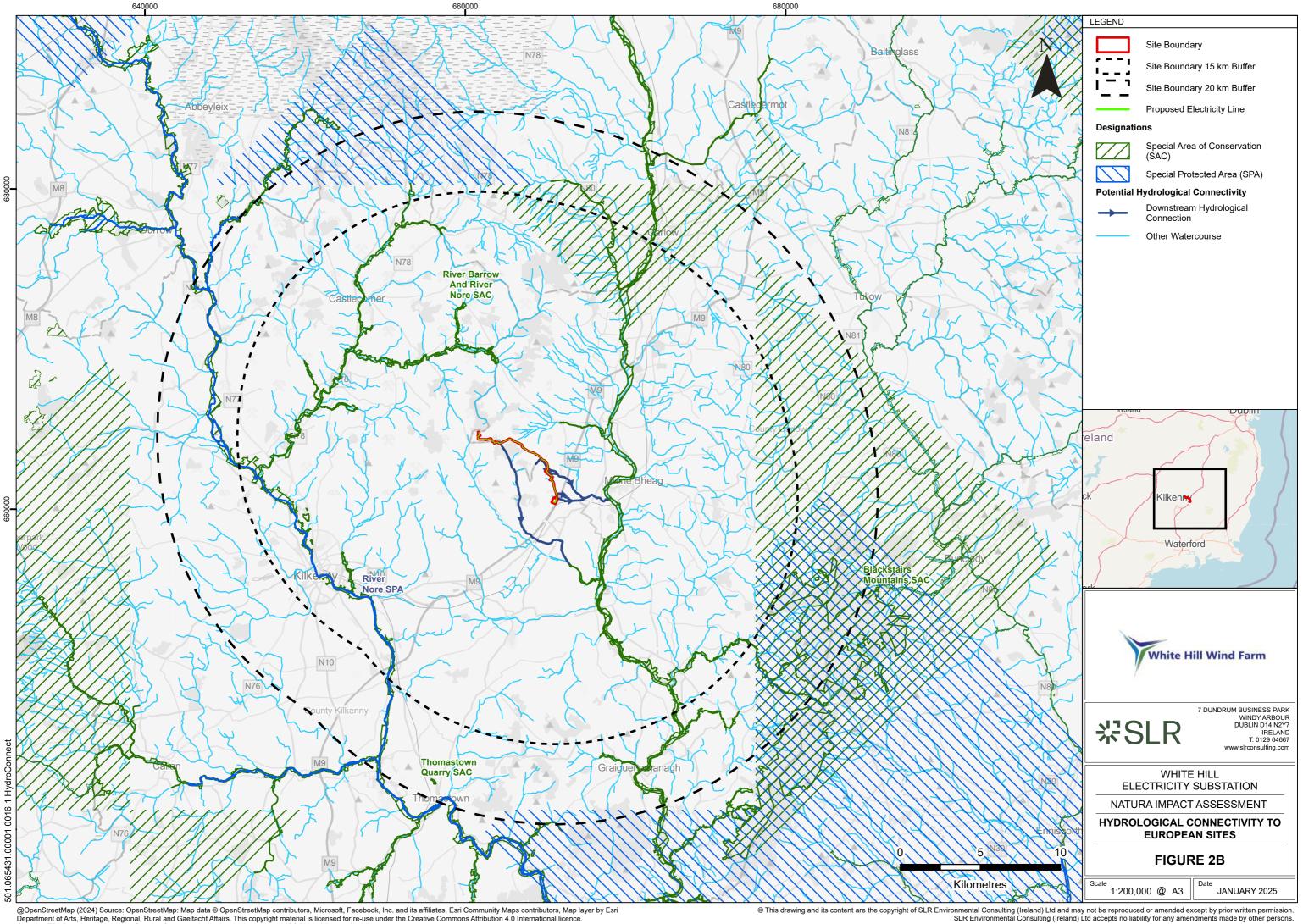





664000

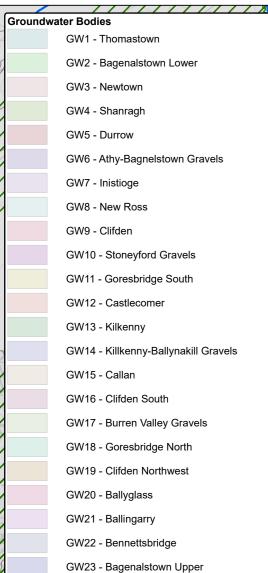
Aerial Imagery (2024) Source: World Imagery: Maxar, Microsoft OpenStreetMap: Map data © OpenStreetMap contributors, Microsoft, Facebook, Inc. and its affiliates, Esri Community Maps contributors, Map layer by Esri

662000


666000

© This drawing and its content are the copyright of SLR Environmental Consulting (Ireland) Ltd and may not be reproduced or amended except by prior written permission. SLR Environmental Consulting (Ireland) Ltd accepts no liability for any amendments made by other persons.

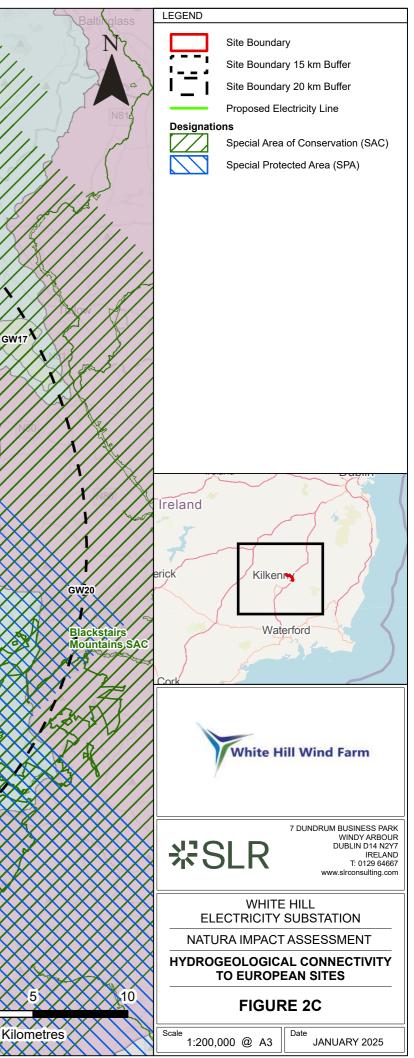



Base Mapping (2024) Source: OpenStreetMap: Map data © OpenStreetMap contributors, Microsoft, Facebook, Inc. and its affiliates, Esri Community Maps contributors, Map layer by Esri Department of Arts, Heritage, Regional, Rural and Gaeltacht Affairs. This copyright material is licensed for re-use under the Creative Commons Attribution 4.0 International licence. Contains EPA Data licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence (2024).

© This drawing and its content are the copyright of SLR Environmental Consulting (Ireland) Ltd and may not be reproduced or amended except by prior written permission. SLR Environmental Consulting (Ireland) Ltd accepts no liability for any amendments made by other persons.



@OpenStreetMap (2024) Source: OpenStreetMap: Map data © OpenStreetMap contributors, Microsoft, Facebook, Inc. and its affiliates, Esri Community Maps contributors, Map layer by Esri Department of Arts, Heritage, Regional, Rural and Gaeltacht Affairs. This copyright material is licensed for re-use under the Creative Commons Attribution 4.0 International licence. Contains EPA Data licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence (2024).


640000



@OpenStreetMap (2024) Source: OpenStreetMap: Map data © OpenStreetMap contributors, Microsoft, Facebook, Inc. and its affiliates, Esri Community Maps contributors, Map layer by Esri Department of Arts, Heritage, Regional, Rural and Gaeltacht Affairs. This copyright material is licensed for re-use under the Creative Commons Attribution 4.0 International licence. Contains EPA Data licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence (2024).

640000

660,000



© This drawing and its content are the copyright of SLR Environmental Consulting (Ireland) Ltd and may not be reproduced or amended except by prior written permission. SLR Environmental Consulting (Ireland) Ltd accepts no liability for any amendments made by other persons.



# **Appendix B** Supporting Material

### **Natura Impact Statement**

White Hill Wind Farm Electricity Substation & Electricity Line

White Hill Wind Limited

SLR Project No.: 501.065427.00001

28 January 2025



### **B.1** Conservation Objectives

#### B.1.1 River Barrow and River Nore cSAC

River Barrow and River Nore cSAC has site specific conservation objectives (NPWS, 2011). These provide clarity on the definition of favourable conservation condition for the QIs of the cSAC, and state whether the QIs are favourable or unfavourable. These are summarised in **Table B-1**.

#### Table B-1: River Barrow and River Nore cSAC

| Qualifying Interests (QIs) | Attributes Defining Conservation Condition                                                                                                                                                                                                                                     | Conservation Condition and Objective         |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| Desmoulin's whorl snail    | Distribution: occupied sites                                                                                                                                                                                                                                                   | Favourable / Maintain                        |
|                            | Population size: adults                                                                                                                                                                                                                                                        |                                              |
|                            | Population density                                                                                                                                                                                                                                                             |                                              |
|                            | Area of occupancy                                                                                                                                                                                                                                                              |                                              |
|                            | Habitat quality: vegetation                                                                                                                                                                                                                                                    |                                              |
|                            | Habitat quality: soil moisture levels                                                                                                                                                                                                                                          |                                              |
|                            |                                                                                                                                                                                                                                                                                |                                              |
| Freshwater pearl mussel    | The status of the freshwater pearl mussel as a<br>qualifying Annex II species for the River Barrow<br>and River Nore SAC is currently under review. The<br>outcome of this review will determine whether a<br>site-specific conservation objective is set for this<br>species. | Unfavourable / Restore assumed as precaution |
| White-clawed crayfish      | Distribution                                                                                                                                                                                                                                                                   | Favourable / Maintain                        |
|                            | Population structure: recruitment                                                                                                                                                                                                                                              |                                              |
|                            | Negative indicator species                                                                                                                                                                                                                                                     |                                              |

| Qualifying Interests (QIs) | Attributes Defining Conservation Condition  | Conservation Condition and Objective |
|----------------------------|---------------------------------------------|--------------------------------------|
|                            | Disease                                     |                                      |
|                            | Water quality                               |                                      |
|                            | Habitat quality: heterogeneity              |                                      |
|                            |                                             |                                      |
| Sea lamprey                | Distribution: extent of anadromy            | Unfavourable / Restore               |
|                            | Population structure of juveniles           |                                      |
|                            | Juvenile density in fine sediment           |                                      |
|                            | Extent and distribution of spawning habitat |                                      |
|                            | Availability of juvenile habitat            |                                      |
| Brook lamprey              | Distribution                                | Unfavourable / Restore               |
|                            | Population structure of juveniles           |                                      |
|                            | Juvenile density in fine sediment           |                                      |
|                            | Extent and distribution of spawning habitat |                                      |
|                            | Availability of juvenile habitat            |                                      |
| River lamprey              | Distribution: extent of anadromy            | Unfavourable / Restore               |
|                            | Population structure of juveniles           |                                      |
|                            | Juvenile density in fine sediment           |                                      |
|                            | Extent and distribution of spawning habitat |                                      |
|                            | Availability of juvenile habitat            |                                      |
| Twaite shad                | Distribution: extent of anadromy            | Unfavourable / Restore               |
|                            | Population structure: age classes           |                                      |

| Qualifying Interests (QIs)                                   | Attributes Defining Conservation Condition                            | Conservation Condition and Objective |
|--------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------|
|                                                              | Extent and distribution of spawning habitat                           |                                      |
|                                                              | Water quality: oxygen levels                                          |                                      |
|                                                              | Spawning habitat quality: filamentous algae;<br>macrophytes; sediment |                                      |
| Atlantic salmon (only in fresh waters)                       | Distribution: extent of anadromy                                      | Unfavourable / Restore               |
|                                                              | Adult spawning fish                                                   |                                      |
|                                                              | Salmon fry abundance                                                  |                                      |
|                                                              | Out-migrating smolt abundance                                         |                                      |
|                                                              | Number and distribution of redds                                      |                                      |
|                                                              | Water quality                                                         |                                      |
| Otter                                                        | Distribution                                                          | Unfavourable / Restore               |
|                                                              | Extent of terrestrial habitat                                         |                                      |
|                                                              | Extent of marine habitat                                              |                                      |
|                                                              | Extent of freshwater (river) habitat                                  |                                      |
|                                                              | Extent of freshwater (lake) habitat                                   |                                      |
|                                                              | Couching sites and holts                                              |                                      |
|                                                              | Fish biomass available                                                |                                      |
| Water courses of plain to montane levels with the            | Habitat distribution                                                  | Favourable / Maintain                |
| Ranunculion fluitantis and Callitricho-Batrachion vegetation | Habitat area                                                          |                                      |
|                                                              | Hydrological regime: river flow                                       |                                      |
|                                                              | Hydrological regime: groundwater discharge                            |                                      |

| Qualifying Interests (QIs)                                        | Attributes Defining Conservation Condition                  | Conservation Condition and Objective |
|-------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------|
|                                                                   | Substratum composition: particle range size                 |                                      |
|                                                                   | Water chemistry: minerals                                   |                                      |
|                                                                   | Water quality: suspended sediment                           |                                      |
|                                                                   | Water quality: nutrients                                    |                                      |
|                                                                   | Vegetation composition: typical species                     |                                      |
|                                                                   | Floodplain connectivity                                     |                                      |
| Hydrophilous tall herb fringe communities of plains               | Habitat distribution                                        | Favourable / Maintain                |
| and of the montane to alpine levels                               | Habitat area                                                |                                      |
|                                                                   | Hydrological regime: flooding depth / height of water table |                                      |
|                                                                   | Vegetation structure: sward height                          |                                      |
|                                                                   | Vegetation composition: broadleaf herb: grass ratio         |                                      |
|                                                                   | Vegetation composition: typical species                     |                                      |
|                                                                   | Vegetation composition: negative indicator species          |                                      |
| Alluvial forests with Alnus glutinosa and Fraxinus                | Habitat area                                                | Unfavourable / Restore               |
| excelsior (Alno-Padion, Alnion incanae, Salicion albae) *priority | Habitat distribution                                        |                                      |
|                                                                   | Woodland size                                               |                                      |
|                                                                   | Woodland structure: cover and height                        |                                      |
|                                                                   | Woodland structure: community diversity and extent          |                                      |
|                                                                   | Woodland structure: natural regeneration                    |                                      |

| Qualifying Interests (QIs) | Attributes Defining Conservation Condition                  | Conservation Condition and Objective |
|----------------------------|-------------------------------------------------------------|--------------------------------------|
|                            | Hydrological regime: flooding depth / height of water table |                                      |
|                            | Woodland structure: dead wood                               |                                      |
|                            | Woodland structure: veteran trees                           |                                      |
|                            | Woodland structure: indicators of local<br>distinctiveness  |                                      |
|                            | Vegetation composition: native tree cover                   |                                      |
|                            | Vegetation composition: typical species                     |                                      |
|                            | Vegetation composition: negative indicator species          |                                      |

### **B.2** European Sites Known Threats and Pressures

Table B-2: European sites with functional connectivity (ecological pathways) to the project area including their Qualifying Interests, known threats and pressures

| Site Code | Site Name                 | Qualifying Feature                                                                               | Pressures Codes                                                              | Known Threats and<br>Pressures                                                                                                                                                                                                                                              |
|-----------|---------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 000770    | Blackstairs Mountains SAC | European dry heaths [4030],<br>Northern Atlantic wet heaths<br>with <i>Erica tetralix</i> [4010] | G01.03.02, J01.01, A04.02,<br>E03, G01.02, K02.01,<br>A04.01.02, K01.01, B02 | Off-road motorized driving,<br>Burning down, Non intensive<br>grazing, Discharges, Walking,<br>horseriding and non-<br>motorised vehicles, Species<br>composition change<br>(succession), Intensive sheep<br>grazing, Erosion, Forest and<br>Plantation management &<br>use |

| Site Code | Site Name                           | Qualifying Feature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Pressures Codes                                                                                                                                                                                                          | Known Threats and<br>Pressures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 002162    | River Barrow and River Nore<br>cSAC | Estuaries [1130], Killarney<br>fern ( <i>Trichomanes</i><br><i>speciosum</i> ) [1421], Otter<br>( <i>Lutra lutra</i> ) [1355], Old<br>sessile oak woods with <i>Ilex</i><br>and <i>Blechnum</i> in the British<br>Isles [91A0], Freshwater pearl<br>mussel ( <i>Margaritifera</i><br><i>margaritifera</i> ) [1029],<br><i>Salicornia</i> and other annuals<br>colonising mud and sand<br>[1310], Water courses of plain<br>to montane levels with the<br><i>Ranunculion fluitantis</i> and<br><i>Callitricho-Batrachion</i><br>vegetation [3260], White-<br>clawed crayfish<br>( <i>Austropotamobius pallipes</i> )<br>[1092], Nore Pearl Mussel<br>( <i>Margaritifera durrovensis</i> )<br>[1990], Petrifying springs with<br>tufa formation ( <i>Cratoneurion</i> )<br>[7220], Atlantic salt meadows<br>( <i>Glauco-Puccinellietalia</i><br><i>maritimae</i> ) [1330], European<br>dry heaths [4030],<br>Desmoulin's whorl snail<br>( <i>Vertigo moulinsiana</i> ) [1016],<br>Twaite shad ( <i>Alosa fallax</i> )<br>[1103], Hydrophilous tall herb<br>fringe communities of plains | A02.01, A04.01.01,<br>J02.05.02, F01.01, A10.01,<br>F02.01.02, B02, B02.01.01,<br>B05, B07, C01.01.01,<br>C01.03, D03.01, F02, E02,<br>F02.03, J02.06, J02,<br>J03.02.01, I01, K01.01, H01,<br>J02.02.01, J02.12.02, M01 | Agricultural intensification,<br>Intensive cattle grazing,<br>Modifying structures of inland<br>water courses, Intensive fish<br>farming, intensification,<br>Removal of hedges and<br>copses or scrub, Netting,<br>Forest and Plantation<br>management & use, Forest<br>replanting (native trees), Use<br>of fertilizers (forestry),<br>Forestry activities not referred<br>to above, Sand and gravel<br>quarries, Peat extraction, Port<br>areas, Fishing and harvesting<br>aquatic resources, Industrial<br>or commercial areas, Leisure<br>fishing, Water abstractions<br>from surface waters, Human<br>induced changes in hydraulic<br>conditions, Reduction in<br>migration or migration<br>barriers, Invasive non-native<br>species, Erosion, Pollution to<br>surface waters (limnic &<br>terrestrial, marine &<br>brackish), Dredging or<br>removal of limnic sediments,<br>Dykes and flooding defence<br>in inland water systems,<br>Changes in abiotic conditions |



| Site Code | Site Name      | Qualifying Feature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Pressures Codes   | Known Threats and<br>Pressures                                                                   |
|-----------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------------------------------------------------------------------------------|
|           |                | and of the montane to alpine<br>levels [6430], Alluvial forests<br>with <i>Alnus glutinosa</i> and<br><i>Fraxinus excelsior (Alno-</i><br><i>Padion, Alnion incanae,</i><br><i>Salicion albae</i> ) [91E0],<br>Mudflats and sandflats not<br>covered by seawater at low<br>tide [1140], Atlantic salmon<br>( <i>Salmo salar</i> ) [1106], River<br>lamprey ( <i>Lampetra fluviatilis</i> )<br>[1099], Reefs [1170], Brook<br>lamprey ( <i>Lampetra planeri</i> )<br>[1096], Mediterranean salt<br>meadows ( <i>Juncetalia</i><br><i>maritimi</i> ) [1410], Sea lamprey<br>(Petromyzon marinus) [1095] |                   |                                                                                                  |
| 004233    | River Nore SPA | Kingfisher ( <i>Alcedo atthis</i> )<br>[A229]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | D03.01, J02.01, X | Port areas, Landfill, land<br>reclamation and drying out,<br>general, No threats or<br>pressures |



### **B.3** Qualifing Features Known Threats and Sensitivies

| EU Code | Qualifying Interests                                                        | Article 17 Report<br>Summary - Threats and<br>Pressures                                                                                                                       | Threats and Pressures<br>Codes                         | Known Threats and<br>Pressures                                                                                                                                                                                                                                                                                                                                                                                                      | Sensitivity of<br>Qualifying Interests                                                                                     |
|---------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| [1016]  | Desmoulin's Whorl Snail<br>( <i>Vertigo moulinsiana</i> )                   | The main pressures are<br>associated with natural<br>succession resulting in<br>species composition<br>change and drying out of<br>the habitat.                               | A07, A10, L01, L02                                     | Abandonment of<br>management/use of<br>other agricultural and<br>agroforestry systems (all<br>except grassland),<br>Extensive grazing or<br>undergrazing by<br>livestock, Abiotic natural<br>processes (e.g. erosion,<br>silting up, drying out,<br>submersion,<br>salinization), Natural<br>succession resulting in<br>species composition<br>change (other than by<br>direct changes of<br>agricultural or forestry<br>practices) | Changes to ground<br>vegetation condition,<br>groundwater dependent<br>and is highly sensitive to<br>hydrological changes. |
| [1029]  | Freshwater Pearl Mussel<br>( <i>Margaritifera</i><br><i>margaritifera</i> ) | The pressures facing this<br>species come from a<br>wide variety of sources<br>(e.g. pollution from urban<br>wastewater,<br>development activities,<br>farming and forestry), | A26, A31, B23, B27,<br>C05, D02, F12, F28,<br>F31, F33 | Agricultural activities<br>generating diffuse<br>pollution to surface or<br>ground waters, Drainage<br>for use as agricultural<br>land, Forestry activities<br>generating pollution to                                                                                                                                                                                                                                              | Surface water<br>dependent. Highly<br>sensitive to hydrological<br>change. Very highly<br>sensitive to pollution.          |

Table B-3: Qualifying Interests of SACs that have undergone assessment including summaries of current threats and sensitivities

| EU Code | Qualifying Interests | Article 17 Report<br>Summary - Threats and<br>Pressures                                                                                                 | Threats and Pressures<br>Codes | Known Threats and<br>Pressures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sensitivity of<br>Qualifying Interests |
|---------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
|         |                      | often quite removed from<br>the species' habitat. Flow<br>changes, caused by land<br>drainage are also a<br>significant pressure<br>facing the species. |                                | surface or ground<br>waters, Modification of<br>hydrological conditions,<br>or physical alteration of<br>water bodies and<br>drainage for forestry<br>(including dams), Peat<br>extraction, Hydropower<br>(dams, weirs, run-off-the-<br>river), including<br>infrastructure, Discharge<br>of urban waste water<br>(excluding storm<br>overflows and/or urban<br>run-offs) generating<br>pollution to surface or<br>ground water,<br>Modification of flooding<br>regimes, flood protection<br>for residential or<br>recreational<br>development, Other<br>modification of<br>hydrological conditions<br>for residential or<br>recreational<br>development,<br>Abstraction of ground<br>and surface waters<br>(including marine) for |                                        |

| EU Code | Qualifying Interests                                                    | Article 17 Report<br>Summary - Threats and<br>Pressures                                                                                                                                                                                                                                                                                              | Threats and Pressures<br>Codes                | Known Threats and<br>Pressures                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sensitivity of<br>Qualifying Interests                                                                                                          |
|---------|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
|         |                                                                         |                                                                                                                                                                                                                                                                                                                                                      |                                               | public water supply and recreational use                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                 |
| [1092]  | White-clawed Crayfish<br>( <i>Austropotamobius</i><br><i>pallipes</i> ) | The main pressures<br>facing this species is<br>related to the non-<br>indigenous crayfish<br>species (NICS) and<br>Crayfish Plaque, a<br>waterborne disease<br>specific to freshwater<br>crayfish.                                                                                                                                                  | 101, 105                                      | Invasive alien species of<br>Union concern, Plant<br>and animal diseases,<br>pathogens and pests                                                                                                                                                                                                                                                                                                                                                                  | Invasive species,<br>disease, surface water<br>dependent. Highly<br>sensitive to hydrological<br>change. Very highly<br>sensitive to pollution. |
| [1095]  | Sea Lamprey<br>( <i>Petromyzon marinus</i> )                            | Most of the pressures on<br>Sea Lampreys are<br>associated with<br>hydropower<br>infrastructure, reduction<br>of prey populations due<br>to overharvesting,<br>drainage and the use of<br>both natural and<br>synthetic fertilisers.<br>Changes in rainfall due<br>to climate change is also<br>considered a significant<br>pressure on the species. | A19, A20, A31, D02,<br>G01, N01, N02, N03, Xo | Application of natural<br>fertilisers on agricultural<br>land, Application of<br>synthetic (mineral)<br>fertilisers on agricultural<br>land, Drainage for use as<br>agricultural land,<br>Hydropower (dams,<br>weirs, run-off-the-river),<br>including infrastructure,<br>Marine fishing and<br>shellfish harvesting<br>(professional,<br>recreational) causing<br>reduction of species/prey<br>populations and<br>disturbance of species,<br>Temperature changes | Marine water dependent.<br>Low sensitivity to<br>hydrological changes.<br>Coastal development,<br>trampling from<br>recreational activity.      |

| EU Code | Qualifying Interests                         | Article 17 Report<br>Summary - Threats and<br>Pressures                                                                                                                                                                                                                                                                                            | Threats and Pressures<br>Codes                 | Known Threats and<br>Pressures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sensitivity of<br>Qualifying Interests                                                                                                                                |
|---------|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         |                                              |                                                                                                                                                                                                                                                                                                                                                    |                                                | (e.g. rise of temperature<br>& extremes) due to<br>climate change,<br>Increases or changes in<br>precipitation due to<br>climate change, Threats<br>and pressures from<br>outside the Member<br>State                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                       |
| [1096]  | Brook Lamprey<br>( <i>Lampetra planeri</i> ) | Most of the pressures on<br>Brook Lampreys are<br>associated with drainage<br>for agriculture, the use of<br>both natural and<br>synthetic fertilisers, tree<br>removal. Infrastructure<br>related to hydropower<br>along with pollution to<br>ground and surface<br>water and the<br>diwastewaterwaste water<br>are also considered<br>pressures. | A19, A20, A31, B09,<br>D02, F11, F12, N01, N02 | Application of natural<br>fertilisers on agricultural<br>land, Application of<br>synthetic (mineral)<br>fertilisers on agricultural<br>land, Drainage for use as<br>agricultural land, Clear-<br>cutting, removal of all<br>trees, Hydropower<br>(dams, weirs, run-off-the-<br>river), including<br>infrastructure, Pollution<br>to surface or ground<br>water due to urban<br>runoffs, Discharge of<br>urban waste water<br>(excluding storm<br>overflows and/or urban<br>run-offs) generating<br>pollution to surface or<br>ground water, | Surface water<br>dependent. Highly<br>sensitive to hydrological<br>change. Availability of<br>suitable spawning<br>ground is a considerable<br>issue for the species. |

| EU Code | Qualifying Interests                             | Article 17 Report<br>Summary - Threats and<br>Pressures                                                                                                                                                                                                                                                                         | Threats and Pressures<br>Codes                         | Known Threats and<br>Pressures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sensitivity of<br>Qualifying Interests                                                                                                                                |
|---------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         |                                                  |                                                                                                                                                                                                                                                                                                                                 |                                                        | Temperature changes<br>(e.g. rise of temperature<br>& extremes) due to<br>climate change                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                       |
| [1099]  | River Lamprey<br>( <i>Lampetra fluviatilis</i> ) | The main pressures on<br>River Lampreys are<br>associated with<br>hydropower<br>infrastructure and<br>changes in rainfall due to<br>climate change. The use<br>of synthetic and natural<br>fertilisers, drainage and<br>also infrastructure<br>related to shipping are<br>also considered to be<br>pressures on the<br>species. | A19, A20, A31, D02,<br>E03, N01, N02, N03              | Application of natural<br>fertilisers on agricultural<br>land, Application of<br>synthetic (mineral)<br>fertilisers on agricultural<br>land, Drainage for use as<br>agricultural land,<br>Hydropower (dams,<br>weirs, run-off-the-river),<br>including infrastructure,<br>Shipping lanes, ferry<br>lanes and anchorage<br>infrastructure (e.g.<br>canalisation, dredging),<br>Temperature changes<br>(e.g. rise of temperature<br>& extremes) due to<br>climate change,<br>Increases or changes in<br>precipitation due to<br>climate change | Surface water<br>dependent. Highly<br>sensitive to hydrological<br>change. Availability of<br>suitable spawning<br>ground is a considerable<br>issue for the species. |
| [1103]  | Twaite Shad ( <i>Alosa fallax fallax</i> )       | There are a number of<br>pressures related to this<br>species, mainly relating<br>to pollution, alteration of                                                                                                                                                                                                                   | A19, A20, D02, E03,<br>G01, G06, G12, I02,<br>N01, N03 | Application of natural<br>fertilisers on agricultural<br>land, Application of<br>synthetic (mineral)                                                                                                                                                                                                                                                                                                                                                                                                                                         | Changes in<br>management. Changes<br>in nutrient or base<br>status. Moderately                                                                                        |

| EU Code | Qualifying Interests | Article 17 Report<br>Summary - Threats and<br>Pressures | Threats and Pressures<br>Codes | Known Threats and<br>Pressures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sensitivity of<br>Qualifying Interests |
|---------|----------------------|---------------------------------------------------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
|         |                      | flow patterns, and habitat<br>disturbance/              |                                | fertilisers on agricultural<br>land, Hydropower (dams,<br>weirs, run-off-the-river),<br>including infrastructure,<br>Shipping lanes, ferry<br>lanes and anchorage<br>infrastructure (e.g.<br>canalisation, dredging),<br>Marine fishing and<br>shellfish harvesting<br>(professional,<br>recreational) causing<br>reduction of species/prey<br>populations and<br>disturbance of species,<br>Freshwater fish and<br>shellfish harvesting<br>(recreational), Bycatch<br>and incidental killing<br>(due to fishing and<br>hunting activities), Other<br>invasive alien species<br>(other than species of<br>Union concern),<br>Temperature changes<br>(e.g. rise of temperature<br>& extremes) due to<br>climate change,<br>Increases or changes in | sensitive to hydrological<br>change.   |

| EU Code | Qualifying Interests | Article 17 Report<br>Summary - Threats and<br>Pressures                                                                                                                                                                                                                                                                                         | Threats and Pressures<br>Codes                                                | Known Threats and<br>Pressures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sensitivity of<br>Qualifying Interests       |
|---------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
|         |                      |                                                                                                                                                                                                                                                                                                                                                 |                                                                               | precipitation due to<br>climate change                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                              |
| [1106]  | Salmon (Salmo salar) | Known pressures include<br>exploitation at sea in<br>commercial fisheries,<br>interceptory fisheries in<br>coastal waters,<br>aquaculture and<br>predation. In addition,<br>the negative influence of<br>climate change on prey<br>structure as well as<br>alterations in habitat and<br>water quality are also<br>pressures on the<br>species. | A25, A26, B23, D02,<br>F12, F28, G11, G19,<br>G20, I02, J01, K05, L06,<br>N01 | Agricultural activities<br>generating point source<br>pollution to surface or<br>ground waters,<br>Agricultural activities<br>generating diffuse<br>pollution to surface or<br>ground waters, Forestry<br>activities generating<br>pollution to surface or<br>ground waters,<br>Hydropower (dams,<br>weirs, run-off-the-river),<br>including infrastructure,<br>Discharge of urban<br>waste water (excluding<br>storm overflows and/or<br>urban run-offs)<br>generating pollution to<br>surface or ground water,<br>Modification of flooding<br>regimes, flood protection<br>for residential or<br>recreational<br>development, Illegal<br>harvesting, collecting<br>and taking, Other<br>impacts from marine | Disease, parasites and barriers to movement. |

| EU Code | Qualifying Interests | Article 17 Report<br>Summary - Threats and<br>Pressures                                                                                         | Threats and Pressures<br>Codes | Known Threats and<br>Pressures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sensitivity of<br>Qualifying Interests                |
|---------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
|         |                      |                                                                                                                                                 |                                | aquaculture, including<br>infrastructure,<br>Abstraction of water, flow<br>diversion, dams and<br>other modifications of<br>hydrological conditions<br>for freshwater<br>aquaculture, Other<br>invasive alien species<br>(other than species of<br>Union concern), Mixed<br>source pollution to<br>surface and ground<br>waters (limnic and<br>terrestrial), Physical<br>alteration of water<br>bodies, Interspecific<br>relations (competition,<br>predation, parasitism,<br>pathogens),<br>Temperature changes<br>(e.g. rise of temperature<br>& extremes) due to<br>climate change |                                                       |
| [1130]  | Estuaries            | Most of the pressures on<br>estuaries come from<br>various sources of<br>pollution, including<br>domestic wastewater,<br>agriculture and marine | A28, F20, G16, I02, XU         | Agricultural activities<br>generating marine<br>pollution, Residential or<br>recreational activities<br>and structures<br>generating marine                                                                                                                                                                                                                                                                                                                                                                                                                                           | Inappropriate<br>development, changes in<br>turbidity |

| EU Code | Qualifying Interests                                             | Article 17 Report<br>Summary - Threats and<br>Pressures                                                                                                                                                                                                              | Threats and Pressures<br>Codes | Known Threats and<br>Pressures                                                                                                                                                                                                                                               | Sensitivity of<br>Qualifying Interests                                                                                                                                                              |
|---------|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         |                                                                  | aquaculture. Alien<br>invasive species such as<br>the naturalised Pacific<br>oyster ( <i>Magalana gigas</i> )<br>are also recognised as a<br>significant pressure                                                                                                    |                                | pollution (excl. marine<br>macro- and micro-<br>particular pollution,<br>Marine aquaculture<br>generating marine<br>pollution, Other invasive<br>alien species (other than<br>species of Union<br>concern), Unknown<br>pressure                                              |                                                                                                                                                                                                     |
| [1140]  | Mudflats and sandflats<br>not covered by seawater<br>at low tide | Pressures on mudflats<br>and sandflats are partly<br>caused by pollution from<br>agricultural, forestry and<br>wastewater sources, as<br>well as impacts<br>associated with marine<br>aquaculture, particularly<br>the Pacific oyster<br>( <i>Magallana gigas</i> ). | A28, F20, G16                  | Agricultural activities<br>generating marine<br>pollution, Residential or<br>recreational activities<br>and structures<br>generating marine<br>pollution (excl. marine<br>macro- and micro-<br>particular pollution,<br>Marine aquaculture<br>generating marine<br>pollution | Surface and marine<br>water dependent.<br>Moderately sensitive to<br>hydrological change.<br>Moderate sensitivity to<br>pollution. Changes to<br>salinity and tidal regime.<br>Coastal development. |
| [1170]  | Reefs                                                            | The main pressures on reefs come from fishing methods that damage the seafloor.                                                                                                                                                                                      | G01, G03                       | Marine fishing and<br>shellfish harvesting<br>(professional,<br>recreational) causing<br>reduction of species/prey<br>populations and<br>disturbance of species,                                                                                                             | Sensitive to disturbance<br>and pollution.                                                                                                                                                          |

| EU Code | Qualifying Interests                                                            | Article 17 Report<br>Summary - Threats and<br>Pressures                                                                                                                                                                                                       | Threats and Pressures<br>Codes  | Known Threats and<br>Pressures                                                                                                                                                                                                                                                                                                                                                           | Sensitivity of<br>Qualifying Interests                                                                                                                                   |
|---------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         |                                                                                 |                                                                                                                                                                                                                                                               |                                 | Marine fish and shellfish<br>harvesting (professional,<br>recreational) activities<br>causing physical loss<br>and disturbance of<br>seafloor habitats                                                                                                                                                                                                                                   |                                                                                                                                                                          |
| [1310]  | Salicornia and other<br>annuals colonising mud<br>and sand                      | Pressures on <i>salicornia</i><br>mud are caused by alien<br>species and overgrazing<br>by livestock                                                                                                                                                          | A09, 102                        | Intensive grazing or<br>overgrazing by livestock,<br>Other invasive alien<br>species (other than<br>species of Union<br>concern)                                                                                                                                                                                                                                                         | Marine water dependent.<br>Medium sensitivity to<br>hydrological change.<br>Changes in salinity and<br>tidal regime. Infilling,<br>reclamation, invasive<br>species.     |
| [1330]  | Atlantic salt meadows<br>( <i>Glauco-Puccinellietalia</i><br><i>maritimae</i> ) | The main pressures on<br>Atlantic salt meadows<br>are from agriculture,<br>including ecologically<br>unstable grazing regimes<br>and land reclamation,<br>and the invasive non-<br>native species common<br>cord-grass ( <i>Spartina</i><br><i>anglica</i> ). | A09, A33, A36, F07,<br>F08, I02 | Intensive grazing or<br>overgrazing by livestock,<br>Modification of<br>hydrological flow or<br>physical alternation of<br>water bodies for<br>agriculture (excluding<br>development and<br>operation of dams),<br>Agriculture activities not<br>referred to above,<br>Sports, tourism and<br>leisure activities,<br>Modification of coastline,<br>estuary and coastal<br>conditions for | Marine and groundwater<br>dependent. Medium<br>sensitivity to hydrological<br>change. Changes in<br>salinity and tidal regime.<br>Overgrazing, erosion<br>and accretion. |

| EU Code | Qualifying Interests                                             | Article 17 Report<br>Summary - Threats and<br>Pressures                                                                                                          | Threats and Pressures<br>Codes | Known Threats and<br>Pressures                                                                                                                                                                                                                                                              | Sensitivity of<br>Qualifying Interests                                                                                                                                    |
|---------|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         |                                                                  |                                                                                                                                                                  |                                | development, use and<br>protection of residential,<br>commercial, industrial<br>and recreational<br>infrastructure and areas<br>(including sea defence or<br>coast protection works<br>and infrastructures),<br>Other invasive alien<br>species (other than<br>species of Union<br>concern) |                                                                                                                                                                           |
| [1355]  | Otter ( <i>Lutra lutra</i> )                                     | There are no pressures facing this species                                                                                                                       | Xxp, Xxt                       | No pressures, No threats                                                                                                                                                                                                                                                                    | Surface and marine<br>water dependent.<br>Moderately sensitive to<br>hydrological change.<br>Sensitivity to pollution.                                                    |
| [1410]  | Mediterranean salt<br>meadows ( <i>Juncetalia<br/>maritimi</i> ) | Most of the pressures on<br>Mediterranean salt<br>meadows are associated<br>with agriculture,<br>including overgrazing,<br>undergrazing and land<br>reclamation. | A09, A10, A33, A36             | Intensive grazing or<br>overgrazing by livestock,<br>Extensive grazing or<br>undergrazing by<br>livestock, Modification of<br>hydrological flow or<br>physical alternation of<br>water bodies for<br>agriculture (excluding<br>development and<br>operation of dams),                       | Marine and groundwater<br>dependent. Medium<br>sensitivity to hydrological<br>change. Changes in<br>salinity and tidal regime.<br>Coastal development<br>and reclamation. |

| EU Code | Qualifying Interests                                                                                                                                    | Article 17 Report<br>Summary - Threats and<br>Pressures                                                                                                                   | Threats and Pressures<br>Codes                         | Known Threats and<br>Pressures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sensitivity of<br>Qualifying Interests                                                                        |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
|         |                                                                                                                                                         |                                                                                                                                                                           |                                                        | Agriculture activities not referred to above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                               |
| [1421]  | Killarney Fern<br>( <i>Trichomanes</i><br><i>speciosum</i> )                                                                                            | There are no pressures facing this species.                                                                                                                               | Xxp, Xxt                                               | No pressures, No threats                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Land use management and direct impacts.                                                                       |
| [3260]  | Water courses of plain to<br>montane levels with<br>vegetation ( <i>Ranunculion</i><br><i>fluitantis</i> and <i>Callitricho-</i><br><i>Batrachion</i> ) | The majority of<br>pressures on this habitat<br>are caused by damage<br>through hydrological and<br>morphological change,<br>eutrophication and other<br>water pollution. | A25, A26, B23, C05,<br>F11, F12, F13, K01,<br>K04, K05 | Agricultural activities<br>generating point source<br>pollution to surface or<br>ground waters,<br>Agricultural activities<br>generating diffuse<br>pollution to surface or<br>ground waters, Forestry<br>activities generating<br>pollution to surface or<br>ground waters, Peat<br>extraction, Pollution to<br>surface or ground water<br>due to urban runoffs,<br>Discharge of urban<br>waste water (excluding<br>storm overflows and/or<br>urban run-offs)<br>generating pollution to<br>surface or ground water,<br>Plants, contaminated or<br>abandoned industrial<br>sites generating pollution<br>to surface or ground | Surface water dependent<br>Highly sensitive to<br>hydrological change and<br>direct physical<br>interactions. |

| EU Code | Qualifying Interests                                       | Article 17 Report<br>Summary - Threats and<br>Pressures                                                                                                                                                                      | Threats and Pressures<br>Codes            | Known Threats and<br>Pressures                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sensitivity of<br>Qualifying Interests                                                                                |
|---------|------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
|         |                                                            |                                                                                                                                                                                                                              |                                           | water, Abstraction from<br>groundwater, surface<br>water or mixed water,<br>Modification of<br>hydrological flow,<br>Physical alteration of<br>water bodies                                                                                                                                                                                                                                                                                                                                         |                                                                                                                       |
| [4010]  | Northern Atlantic wet<br>heaths with <i>Erica tetralix</i> | Overgrazing,burning,<br>wind farm development<br>and erosion are the main<br>pressures associated<br>with this habitat, along<br>with nitrogen deposition<br>from agricultural<br>activities that generate<br>air pollution. | A09, A11, A27, B01,<br>D01, L01, N01, N02 | Intensive grazing or<br>overgrazing by livestock,<br>Burning for agriculture,<br>Agricultural activities<br>generating air pollution,<br>Conversion to forest<br>from other land uses, or<br>afforestation (excluding<br>drainage), Wind, wave<br>and tidal power,<br>including infrastructure,<br>Abiotic natural processes<br>(e.g. erosion, silting up,<br>drying out, submersion,<br>salinization),<br>Temperature changes<br>(e.g. rise of temperature<br>& extremes) due to<br>climate change | Surface and<br>groundwater dependent.<br>Highly sensitive to<br>hydrological changes.<br>Inappropriate<br>management. |
| [4030]  | European dry heaths                                        | A number of significant<br>pressures were recorded<br>for this habitat in the                                                                                                                                                | A09, A11, B01, D01,<br>N01, N02           | Intensive grazing or<br>overgrazing by livestock,<br>Burning for agriculture,                                                                                                                                                                                                                                                                                                                                                                                                                       | Moderately sensitive to<br>hydrological change.<br>Changes in                                                         |

| EU Code | Qualifying Interests                                                                             | Article 17 Report<br>Summary - Threats and<br>Pressures                                                                                                                                                                       | Threats and Pressures<br>Codes                 | Known Threats and<br>Pressures                                                                                                                                                                                                                                 | Sensitivity of<br>Qualifying Interests                                                                                                                                |
|---------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         |                                                                                                  | current reporting period,<br>particularly overgrazing<br>by sheep and burning for<br>agriculture with<br>afforestation and wind<br>farms also being<br>recognised as pressures.                                               |                                                | Conversion to forest<br>from other land uses, or<br>afforestation (excluding<br>drainage), Wind, wave<br>and tidal power,<br>including infrastructure,<br>Temperature changes<br>(e.g. rise of temperature<br>& extremes) due to<br>climate change             | management. Changes<br>in nutrient status.                                                                                                                            |
| [6430]  | Hydrophilous tall herb<br>fringe communities of<br>plains and of the<br>montane to alpine levels | Pressures on the habitat<br>include invasive species;<br>and agricultural<br>intensification and<br>drainage in the lowlands.                                                                                                 | A09, A31, I01, I02                             | Intensive grazing or<br>overgrazing by livestock,<br>Drainage for use as<br>agricultural land,<br>Invasive alien species of<br>Union concern, Other<br>invasive alien species<br>(other than species of<br>Union concern)                                      | Changes in management<br>such as grazing regime.<br>Changes in nutrient or<br>base status. Changes to<br>vegetation composition.<br>Introduction of alien<br>species. |
| [7220]  | Petrifying springs with<br>tufa formation<br>(Cratoneurion)                                      | Pressures related to this<br>habitat are associated<br>with drainage, pollution<br>to ground and surface<br>waters, recreational<br>activities, infrastructure,<br>overgrazing and<br>abandonment of<br>grassland management. | A06, A10, E01, F07,<br>H08, J01, K02, K04, L02 | Abandonment of<br>grassland management<br>(e.g. cessation of grazing<br>or of mowing), Extensive<br>grazing or undergrazing<br>by livestock, Roads,<br>paths, railroads and<br>related infrastructure<br>(e.g. bridges, viaducts,<br>tunnels), Sports, tourism | Surface and<br>groundwater dependant.<br>Highly sensitive to<br>hydrological changes.<br>Highly sensitive to<br>pollution.                                            |

| EU Code | Qualifying Interests                                                                  | Article 17 Report<br>Summary - Threats and<br>Pressures                                                                                                                                                                                                                                 | Threats and Pressures<br>Codes | Known Threats and<br>Pressures                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sensitivity of<br>Qualifying Interests                                                                |
|---------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
|         |                                                                                       |                                                                                                                                                                                                                                                                                         |                                | and leisure activities,<br>Other human intrusions<br>and disturbance not<br>mentioned above<br>(Dumping, accidental<br>and deliberate<br>disturbance of bat roosts<br>(e.g. caving)), Mixed<br>source pollution to<br>surface and ground<br>waters (limnic and<br>terrestrial), Drainage,<br>Modification of<br>hydrological flow, Natural<br>succession resulting in<br>species composition<br>change (other than by<br>direct changes of<br>agricultural or forestry<br>practices) |                                                                                                       |
| [91A0]  | Old sessile oak woods<br>with <i>Ilex</i> and <i>Blechnum</i><br>in the British Isles | The significant pressure<br>facing this habitat are<br>associated with invasive<br>non-native species such<br>as <i>Rhododendron</i><br><i>ponticum</i> , cherry laurel<br>( <i>Prunus laurocerasus</i> )<br>and beech ( <i>Fagus</i><br><i>sylvatica</i> ) and<br>overgrazing by deer. | A09, B09, I02, I04, M07        | Intensive grazing or<br>overgrazing by livestock,<br>Clear-cutting, removal of<br>all trees, Other invasive<br>alien species (other than<br>species of Union<br>concern), Problematic<br>native species, Storm,<br>cyclone                                                                                                                                                                                                                                                           | Changes in<br>management. Changes<br>in nutrient or base<br>status. Introduction of<br>alien species. |

#### B.4 Plans

#### Table B-4: Assessment of Relevant Plans

| Plan                                              | Policies for the Protection of European Sites                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Development Allocations with Potential for In<br>Combination Effects |
|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| National<br>Biodiversity Action<br>Plan 2023-2030 | <ul> <li>2A2 NPWS will publish detailed site-specific conservation objectives, along with the approach used, for all existing SACs and SPAs</li> <li>2A3 NPWS and relevant stakeholders will implement the conservation measures necessary to achieve the conservation objectives for Natura 2000 sites, and will develop and implement additional measures as necessary, to contribute towards achieving favourable conservation status nationally</li> <li>2A4 NPWS, after consultation with other relevant bodies, will complete a review of its licencing and consent systems to facilitate sustainable activities within Natura 2000 sites</li> <li>2A5 NPWS will publish and implement Species Action or Threat Response Plans with population targets for threatened and endangered species that are in unfavourable status or have declining trends</li> <li>2A7 Údarás na Gaeltachta will undertake a review of estates and lands within their operational zones, with a view to creating site specific management plans; identifying areas within or ecologically connected to Natura 2000 lands to support delivery on the conservation objectives of these sites; identifying lands suitable for inclusion in the All-Ireland Pollinator Plan and potentially become a partner in the plan; identifying lands suitable for Biodiversity Corridors, imitating the structure and diversity of native vegetation</li> </ul> | Not applicable.                                                      |

| Plan                                                             | Policies for the Protection of European Sites                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Development Allocations with Potential for In<br>Combination Effects                                                                                                                                                                                                                                                         |
|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                  | <b>2C6</b> NPWS will implement the restoration/rewetting actions set out in the National Raised Bog Special Areas of Conservation Management Plan 2017-2022, in Ireland's 2023 Climate Action Plan and will also escalate blanket bog restoration                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                              |
|                                                                  | <b>2H4</b> NPWS in collaboration with all relevant stakeholders will resource<br>and implement onthe-ground actions to control, manage and where<br>possible and feasible, eradicate occurrences of invasive alien species,<br>including the removal of stands of invasive species from Protected<br>Areas and National Parks                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                              |
|                                                                  | <b>4C1</b> Monitoring of habitats and species listed on the EU Nature Directives will be continued and enhanced where required by NPWS and DECC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                              |
| Southern Region<br>Spatial and<br>Economic Strategy<br>2020-2032 | <b>RPO 126.c</b> Local Authorities are required to carry out required screening of projects and any draft land-use plan or amendment/variation to any such plan for any potential ecological impact on areas designated or proposed for inclusion as Natura 2000/European Sites and shall decide if an Appropriate Assessment is necessary, of the potential impacts of the project or plan on the conservation objectives of any Natura 2000/European Site.<br><b>RPO 151.j</b> The following principles of land use and transport integration will guide development: the protection of the Natura 2000 networks and the ecological linkages connected to the Natura 2000 network. | Not applicable.                                                                                                                                                                                                                                                                                                              |
| Kilkenny City &<br>County<br>Development Plan<br>2021-2027       | <ul> <li>Development management requirements include:</li> <li>To ensure that development proposals, where relevant, improve the ecological coherence of the Natura 2000 network and encourage the retention and management of landscape features</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                         | No development allocations identified within the development<br>plan were found to occur within the wider area surrounding<br>the project site. However, the plan provides a framework for<br>land use developments and activities with potential for<br>construction and operation source effects throughout the<br>County. |

| Plan                                           | Policies for the Protection of European Sites                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Development Allocations with Potential for In<br>Combination Effects                                                                                                                                                                                                                                                                                                          |
|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                | that are of major importance for wild fauna and flora as per Article 10 of the Habitats Directive.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                               |
|                                                | • To protect and where possible enhance wildlife habitats and landscape features which act as ecological corridors/networks and stepping stones, such as river corridors, hedgerows and road verges, and to minimise the loss of habitats and features of the wider countryside (such as ponds, wetlands, trees) which are not within designated sites.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                               |
| Carlow County<br>Development Plan<br>2022-2028 | It is a policy objective of Carlow County Council to:<br><b>NH.O1:</b> Implement relevant actions from the National Biodiversity<br>Action Plan 2017-2021 (and any superseding plan) and to prepare a<br>County Heritage Plan and Biodiversity Action Plan during the lifetime<br>of this County Development Plan in accordance with RPO 126 in the<br>RSES, to ensure the protection and appreciation of heritage and<br>nature at local level including recognition of rich biodiversity of<br>designation of existing special areas of conservation i.e. Blackstairs<br>Mountains, Slaney River Valley and River Barrow and River Nore<br>SAC.<br><b>NS.P1:</b> Support the conservation and enhancement of Natura 2000<br>Sites, and to protect the Natura 2000 network from any plans and<br>projects that are likely to have a significant effect on the coherence or<br>integrity of a Natura 2000 Site, in accordance with relevant EU<br>Environmental Directives and applicable National Legislation, Policies,<br>Plans and Guidelines.<br><b>NS.P2:</b> Screening for Appropriate Assessment and if required | No development allocations identified within the development<br>plan can occur within the wider area surrounding the project<br>site, as the project is in a different county. However, the plan<br>provides a framework for land use developments and<br>activities with potential for construction and operation source<br>effects on European sites throughout the County. |
|                                                | Appropriate Assessment and inrequired<br>Appropriate Assessment is undertaken for all plans to be adopted and<br>projects to be granted permission/authorised by the Council. Where<br>likely significant effects have been identified in respect of any plan or<br>project not directly connected with or necessary to the management of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                               |

| Plan                          | Policies for the Protection of European Sites                                                                                                                                                                                                                                                                                                                                                                                                           | Development Allocations with Potential for In<br>Combination Effects                                                                                                                                                                                                                                          |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                               | a Natura 2000 site, either individually or in combination with other<br>plans or projects, ensure appropriate assessment, in accordance with<br>Article 6(3) of the Habitats Directive. The Council shall only agree to<br>the plan or project after having ascertained that it will not adversely<br>affect the integrity of the site concerned, unless the plan or project is<br>subject to the provisions of Article 6(4) of the Habitats Directive. |                                                                                                                                                                                                                                                                                                               |
|                               | <b>NS.P3:</b> Consider impacts within a plan or project's zone of influence, which may include Natura 2000 sites outside the County, when assessing whether a plan or project is likely to have significant effects on Natura 2000 sites.                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                               |
|                               | <b>NS.P3:</b> Maintain or restore the favourable conservation status of County's Natura 2000 sites qualifying interest habitats and species.                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                               |
|                               | <b>NS.O1:</b> Strictly protect areas designated or proposed to be designated as Natura 2000 sites, including any areas that may be proposed for designation or designated during the period of this Plan.                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                               |
| Laois County                  | It is Council policy to:                                                                                                                                                                                                                                                                                                                                                                                                                                | No development allocations identified within the development                                                                                                                                                                                                                                                  |
| Development Plan<br>2021-2027 | <b>BNH3:</b> Support and co-operate with statutory authorities and others in support of measures taken to manage proposed or designated sites in order to achieve their conservation objectives and maintain the favourable conservation status and conservation value of Sites under National and European legislation and International Agreements and maintain and /develop linkages between them where feasible.                                    | plan can occur within the wider area surrounding the project<br>site, as the project is in a different county. However, the plan<br>provides a framework for land use developments and<br>activities with potential for construction and operation source<br>effects on European sites throughout the County. |
|                               | <b>BNH5:</b> Projects giving rise to significant cumulative, direct, indirect or secondary impacts on Natura 2000 sites arising from their size or scale, land take, proximity, resource requirements, emissions (disposal to land, water or air), transportation requirements, duration of construction, operation, decommissioning or from any other effects shall not be permitted on the basis of this Plan (either individually or in              |                                                                                                                                                                                                                                                                                                               |

| Plan | Policies for the Protection of European Sites                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Development Allocations with Potential for In<br>Combination Effects |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
|      | combination with other plans or projects)[1]. Screening for AAs and AAs undertaken shall take into account invasive species as relevant.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                      |
|      | <b>BNH9:</b> Engage with the National Parks and Wildlife Service to ensure<br>Integrated Management Plans are prepared for all Natura sites (or<br>parts thereof) and ensure that plans are fully integrated with the<br>County Development Plan and other plans and programmes, with the<br>intention that such plans are practical, achievable and sustainable and<br>have regard to all relevant ecological, cultural, social and economic<br>considerations and with special regard to local communities.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                      |
|      | <b>DM BNH2:</b> Article 6(3) and 6(4) of the Habitats Directive requires an Appropriate Assessment of any plan or project whether within or outside a designated Natura 2000 site, which does not directly relate to the management of the site but may impact upon its conservation objectives. All planning applications shall be screened for Appropriate Assessment and a Phase II Appropriate Assessment carried out if necessary. Where full Appropriate Assessment is required, the assessment shall be based on best scientific knowledge, by a person with ecological expertise. It shall address the potential impacts of the plan or project on the conservation objectives of any Natura 2000 site. The impacts assessed must include the indirect and cumulative impacts of approving the plan or project, considered with any current or proposed activities, developments or policies impacting on the site. The potential impacts of policies outside Natura 2000 sites but potentially impacting upon them (known as 'ex situ' impacts) must also be included in the assessment. (Refer to: Appropriate Assessment of Plans and projects in Ireland, Guidance for Planning Authorities, DEHLG (2009). |                                                                      |



# Appendix C Baseline Bird Report

### **Natura Impact Statement**

White Hill Wind Farm Electricity Substation & Electricity Line

White Hill Wind Limited

SLR Project No.: 501.065427.00001

28 January 2025





# 尜SLR

# Electricity Line & Substation Breeding Wader Report

# White Hill Wind Farm

# White Hill Wind Farm Ltd

Clondargan, Stradone, Co.Cavan, H12 NV06

Prepared by:

SLR Environmental Consulting (Ireland) Ltd

Suite 212, Acorn Business Centre, Blackrock, Cork, T12 K7CV

SLR Project No.:501.065427.00001 Client Reference No: N/A

4 October 2024

Revision: 00

Making Sustainability Happen

#### **Revision Record**

| Revision | Date                   | Prepared By   | Checked By       | Authorised By    |
|----------|------------------------|---------------|------------------|------------------|
| 0        | 4 October 2024         | Darragh Nagle | Dr Jonathon Dunn | Dr Jonathon Dunn |
|          | Click to enter a date. |               |                  |                  |
|          | Click to enter a date. |               |                  |                  |
|          | Click to enter a date. |               |                  |                  |
|          | Click to enter a date. |               |                  |                  |

## **Basis of Report**

This document has been prepared by SLR Environmental Consulting (Ireland) Ltd (SLR) with reasonable skill, care and diligence, and taking account of the timescales and resources devoted to it by agreement with White Hill Wind Farm Ltd (the Client) as part or all of the services it has been appointed by the Client to carry out. It is subject to the terms and conditions of that appointment.

SLR shall not be liable for the use of or reliance on any information, advice, recommendations and opinions in this document for any purpose by any person other than the Client. Reliance may be granted to a third party only in the event that SLR and the third party have executed a reliance agreement or collateral warranty.

Information reported herein may be based on the interpretation of public domain data collected by SLR, and/or information supplied by the Client and/or its other advisors and associates. These data have been accepted in good faith as being accurate and valid.

The copyright and intellectual property in all drawings, reports, specifications, bills of quantities, calculations and other information set out in this report remain vested in SLR unless the terms of appointment state otherwise.

This document may contain information of a specialised and/or highly technical nature and the Client is advised to seek clarification on any elements which may be unclear to it.

Information, advice, recommendations and opinions in this document should only be relied upon in the context of the whole document and any documents referenced explicitly herein and should then only be used within the context of the appointment.

# **Table of Contents**

| Basi  | s of Reporti                                                   |  |  |  |  |  |
|-------|----------------------------------------------------------------|--|--|--|--|--|
| 1.0   | Introduction1                                                  |  |  |  |  |  |
| 1.1   | Background to the commission1                                  |  |  |  |  |  |
| 1.2   | Site Description1                                              |  |  |  |  |  |
| 1.3   | Purpose of the report1                                         |  |  |  |  |  |
| 1.4   | Relevant Legislation1                                          |  |  |  |  |  |
| 2.0   | Methodology2                                                   |  |  |  |  |  |
| 2.1   | Scope of Work2                                                 |  |  |  |  |  |
| 2.2   | Desk-based Review2                                             |  |  |  |  |  |
| 2.3   | Field Surveys2                                                 |  |  |  |  |  |
| 2.3.1 | Breeding Wader Surveys2                                        |  |  |  |  |  |
| 2.4   | Survey Limitations                                             |  |  |  |  |  |
| 2.5   | Project Team: Evidence of Technical Competence and Experience4 |  |  |  |  |  |
| 3.0   | Results5                                                       |  |  |  |  |  |
| 3.1   | Desk-based Review5                                             |  |  |  |  |  |
| 3.1.1 | Natura 2000 Sites5                                             |  |  |  |  |  |
| 3.1.2 | Other Nature Conservation Sites5                               |  |  |  |  |  |
| 3.1.3 | Species Records                                                |  |  |  |  |  |
| 3.2   | Breeding Wader Surveys                                         |  |  |  |  |  |
| 3.2.1 | Common Buzzard7                                                |  |  |  |  |  |
| 3.2.2 | Common Crossbill                                               |  |  |  |  |  |
| 3.2.3 | Common Kestrel7                                                |  |  |  |  |  |
| 3.2.4 | Common Linnet7                                                 |  |  |  |  |  |
| 3.2.5 | Common Snipe8                                                  |  |  |  |  |  |
| 3.2.6 | Common Starling                                                |  |  |  |  |  |
| 3.2.7 | Cuckoo8                                                        |  |  |  |  |  |
| 3.2.8 | Eurasian Sparrowhawk8                                          |  |  |  |  |  |
| 3.2.9 | Goldcrest                                                      |  |  |  |  |  |
| 3.2.1 | 0 Meadow Pipit                                                 |  |  |  |  |  |
| 3.2.1 | 1 Northern Raven                                               |  |  |  |  |  |
| 3.2.1 | 2 Willow Warbler                                               |  |  |  |  |  |
| 4.0   | Summary and Conclusions9                                       |  |  |  |  |  |
| 5.0   | Legal and Conservation Status of Target Species Recorded10     |  |  |  |  |  |



# **Tables in Text**

| Table 2-1: Scope of Ornithological Work April to August 2024                                                            | 2  |
|-------------------------------------------------------------------------------------------------------------------------|----|
| Table 3-1: NHAs and pNHAs within 20 km of the Project Site and Bird Species Listed in the<br>Site Synopses              |    |
| Table 3-2: Relevant Bird Species Recorded from the 2 Km Grid Squares within which The           Project Site is Located | 6  |
| Table 3-3: Results from Breeding Wader Surveys April- June 2024                                                         | 6  |
| Table 5-1: Legal and Conservation Status of Target Species1                                                             | 10 |

# Appendices

| Appendix A | Survey Times, Dates & Observations |
|------------|------------------------------------|
|------------|------------------------------------|

- Appendix B Weather Data
- Appendix C Survey Data
- Appendix D Figures

## 1.0 Introduction

SLR Environmental Consulting (Ireland) Ltd (SLR) was commissioned by White Hill Wind Farm Ltd to carry out a breeding wader bird survey programme for the proposed White Hill Wind Farm electricity line and substation (hereafter 'the Project'), Co. Carlow / Co. Kilkenny during the breeding bird season 2024. The purpose of this report is to describe these surveys and the resulting ornithological baseline.

#### **1.1 Background to the commission**

No previous planning permission has been sought on the application site (hereafter 'the Project Site') for the development of a substation by White Hill Wind Farm Ltd or any other party.

#### **1.2** Site Description

The substation and electricity line route is predominantly comprised of lower value, heavily grazed improved grassland, and agricultural wet grassland with patches of soft rush and gorse scrub. Hedgerows, treelines and scrub are also present, and coniferous and mixed woodlands are found within the wider landscape.

#### **1.3 Purpose of the report**

This report outlines the surveys undertaken and methods used. It then summarises the survey data obtained and provides descriptions of the legal and conservation status of the species recorded.

The assessment of impacts resulting from the Project and the development of mitigation measures, if required, are beyond the scope of this report and will be covered in a separate Environmental Impact Assessment (EIA) Report and Natura Impact Statement (NIS).

#### 1.4 Relevant Legislation

Legislation relevant to this report includes the EC Birds Directives and the Wildlife Act (1976, as amended)<sup>1</sup>. Birds listed under Annex I of the Birds Directive are described in Section 5 and are afforded strict protection at the European and national level. All Irish birds are protected by the Wildlife Act.

<sup>&</sup>lt;sup>1</sup> <u>https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32009L0147</u> 04/10/2024

# 2.0 Methodology

#### 2.1 Scope of Work

The scope of survey work during the breeding season was based on knowledge of the Project Site acquired during the scoping survey, a desk-based review and access to lands within and surrounding the Project Site.

According to the guidelines presented by the Bird Survey & Assessment Steering Group<sup>2</sup>, six survey visits is required for breeding bird surveys as a standard, with any deviation supported with detailed and robust justification. As mentioned in section 1.2, the habitats present at the Project Site are generally of lower value for birds, dominated by heavily grazed agricultural fields.

The habitats present were judged most likely to provide potential breeding habitat for wader species and to a lesser extent, passerine species. Therefore, breeding wader surveys were considered as most appropriate, and the level of survey effort was dictated by this species-specific methodology. This survey methodology is suitable for recording other birds that could be present, such as passerines, which typically require at two survey visits for a Breeding Bird Survey<sup>7</sup>.

The details of the surveys are provided in section 2.3 and an overview given in Table 2-1.

| Table 2-1: Sc | ope of Ornitholog | gical Work April | to August 2024 |
|---------------|-------------------|------------------|----------------|
|---------------|-------------------|------------------|----------------|

| Survey Type                      | Summary Methodology                                                                                               |
|----------------------------------|-------------------------------------------------------------------------------------------------------------------|
| Breeding wader surveys (lowland) | Three surveys were carried out from April to June 2024 to search for any waders breeding within the Project Site. |

#### 2.2 Desk-based Review

The desk review collated any available information to date on the breeding bird populations and movements around, within and surrounding the Project Site boundary.

The websites of the National Parks and Wildlife Service (NPWS)<sup>3</sup>, the UK and Ireland Bird Atlas 2007-2011<sup>4</sup> and the National Biodiversity Data Centre (NBDC)<sup>5</sup> were also accessed for information on sites designated for nature conservation in the vicinity of the Project Site.

#### 2.3 Field Surveys

#### 2.3.1 Breeding Wader Surveys

Lowland wader surveys were conducted between April and June 2024 following the methodology described in O'Brien and Smith (1992)<sup>6</sup>. The survey involved a walked transect which covered all habitat potentially suitable for lowland breeding waders within the Project Site. Transects sampled suitable habitats within the Project Site and 500 m buffer, including

<sup>&</sup>lt;sup>6</sup> O'Brien, M. and Smith, K. W. (1992) Changes in the status of waders breeding on wet lowland grasslands in England and Wales between 1982 and 1989, Bird Study, 39:3, 165-176.



<sup>&</sup>lt;sup>2</sup> Bird Survey & Assessment Steering Group. (2024). Bird Survey Guidelines for assessing ecological impacts, <u>https://birdsurveyguidelines.org</u> [20/09/2024]

<sup>&</sup>lt;sup>3</sup> <u>www.npws.ie</u> 04/10/2024

<sup>&</sup>lt;sup>4</sup> <u>https://app.bto.org/mapstore/StoreServlet</u> 04/10/2024

<sup>&</sup>lt;sup>5</sup> <u>http://maps.biodiversityireland.ie/#/Map</u> 04/10/2024

wet grassland and improved agricultural grassland. Surveys were undertaken three hours before dusk and three hours after dawn.

The location, movement and behaviour of all wader species was recorded onto field maps using standard BTO species codes (had any waders been recorded). The following criteria were to be recorded for each species:

- Northern lapwing *Vanellus vanellus* the total numbers of birds seen from the transect;
- Common snipe *Gallinago gallinago* the number of drumming plus chipping birds heard or seen from the transect; and
- Other species the number of pairs (where 'pairs' = (paired individuals/2), displaying birds, nests or broods and other single birds not in flocks).

The breeding status of waders recorded during surveys was evaluated against the criteria set out in Gilbert et al. (1998)<sup>7</sup> and BTO<sup>8</sup> for wader surveys.

Birds were confirmed breeding if:

- Nests, eggs, or young were located;
- Adults repeatedly alarm called;
- Distraction displays were seen; and
- Territorial disputes were observed.

Birds were probably breeding if:

- They were observed displaying or singing on more than one visit;
- A pair was seen in suitable nesting habitat in the breeding season;
- Courtship was seen in or near suitable breeding habitat;
- They were observed visiting a probable nest site;
- Agitated behaviour or anxiety calls were observed; and
- A pair of birds was observed in suitable habitat for nesting.

Birds were possibly breeding if:

- They were observed displaying or singing on one visit in suitable breeding habitat; and
- A single bird was observed in the breeding season in suitable nesting habitat.

Other records were considered to be of non-breeding birds, failed breeders, birds loafing, feeding or on passage to other areas.

All other species were recorded and the BTO breeding evidence framework (see **Appendix C**) was used to determine breeding status.

See Appendix D, Figure 1.1 for survey area and Appendix B and Appendix C for metadata relating to these surveys.

<sup>&</sup>lt;sup>8</sup> <u>https://www.bto.org/our-science/projects/birdatlas/methods/breeding-evidence</u> [Last Accessed 18/09/2024]



<sup>&</sup>lt;sup>7</sup> Gilbert et al. (1998). Bird Monitoring Methods. RSPB, UK.

#### 2.4 Survey Limitations

There were no limitations throughout the surveys.

# 2.5 Project Team: Evidence of Technical Competence and Experience

Details of the project team are described below

#### Jonathon Dunn (JD) – Project Manager and Lead Ornithologist

Jonathon is an Associate Ecologist with SLR and holds a BA (Hons) in Natural Sciences from the University of Cambridge, an MSc in Ecology Evolution and Conservation from Imperial College London and a PhD in Avian Ecology from Newcastle University. He is a Full member of the Chartered Institute of Ecology and Environmental Management (MCIEEM). Jonathon is a highly skilled and experienced bird surveyor with ten years' post graduate experience as a professional consultant ecologist. Jonathon managed this project through liaison with the client, coordination of the survey team, supervision of the health and safety of the team, collating, quality controlling and assessing the survey data

#### Adrian Allen (AA) - Surveyor

Adrian is an experienced surveyor for a variety of renewable energy projects with a lifetime of birding experience. Adrian has carried out a wide variety of bird survey types including VPs, breeding raptor, breeding wader, woodcock *Scolopax rusticola*, feeding distribution and hen harrier *Circus cyaneus* roost surveys.

## 3.0 Results

#### 3.1 Desk-based Review

#### 3.1.1 Natura 2000 Sites

There is one SPA and three SACs within 20 km<sup>9</sup> of the Project Site. The River Nore SPA (004097) is located 12.9 km southwest of the Project Site and is designated for common kingfisher *Alcedo atthis.* 

Although SACs are not designated for birds, the River Barrow and River Nore SAC (9.1km northwest of the substation) site synopsis mentions seven species likely present in the breeding season: common kingfisher, peregrine falcon *Falco peregrinus*, long-eared owl *Asio otus*, mallard *Anas platyrhynchos*, common snipe, water rail *Rallus aquaticus* and northern raven *Corvus corax*.

The Blackstairs Mountains SAC (14.8km southeast of the substation) site synopsis mentions red grouse *Lagopus scotica* using the area. Red grouse are highly sedentary and rarely disperse more than 4 km away from their natal territories<sup>10</sup>.

#### 3.1.2 Other Nature Conservation Sites

There is one NHA and 15 pNHAs present within 20 km of the Project Site.

Only two pNHA sites mention birds in their site synopses. Red Bog, Dungarvan pNHA mentions waterfowl are present in winter and therefore are absent in the breeding season

Details of the remaining site is provided below in **Table 3-1.** A focus has been given to species likely present in the breeding season.

# Table 3-1: NHAs and pNHAs within 20 km of the Project Site and Bird Species Listed in the Site Synopses

| Site Name                 | Site Code | Distance/direction<br>from Site Boundary                                                                | Qualifying Interests<br>(Relevant to the<br>Breeding Season)                        |
|---------------------------|-----------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| White Hall Quarry<br>pNHA | 000855    | <1 km northeast from<br>nearest point to<br>electricity line route<br>1.5 km northwest of<br>substation | <ul> <li>Raptors nesting in<br/>quarry cliffs (no<br/>species mentioned)</li> </ul> |

#### 3.1.3 Species Records

The NBDC database was searched for records of relevant bird species (species of conservation concern or listed under Annex I of the Birds Directive<sup>1</sup>) from the 2 km grid squares S6064, S6264, S6560, S6561 and S6562 within which the Project Site is located. The results are listed below in **Table 3-2**.

<sup>&</sup>lt;sup>10</sup> Cummins, S., Bleasdale, A., Douglas, C., Newton, S., O'Halloran, J. & Wilson, H. J. (2010) The status of Red Grouse in Ireland and the effects of land use, habitat and habitat quality on their distribution. Irish Wildlife Manuals No. 50, National Parks and Wildlife Service, Department of Housing, Local Government and Heritage.



<sup>&</sup>lt;sup>9</sup> A 20 km search radius was used as this represents the maximum core foraging distance used by Qualifying Interest species of SPAs in the UK and Ireland

# Table 3-2: Relevant Bird Species Recorded from the 2 Km Grid Squares within whichThe Project Site is Located

| Grid Square | Species        | Date of Last Record<br>& Dataset | Designation  |
|-------------|----------------|----------------------------------|--------------|
| S6064       | N/A            | N/A                              | N/A          |
| S6264       | Long-eared owl | 25/03/21 Birds of<br>Ireland     | BoCCI4 Green |
| S6560       | N/A            | N/A                              | N/A          |
| S6561       | N/A            | N/A                              | N/A          |
| S6562       | N/A            | N/A                              | N/A          |

The absence of records of species from the NBDC database does not necessarily imply that a species does not occur within the search area, rather that it has not formally been recorded as present.

#### 3.2 Breeding Wader Surveys

There was one target species recorded during the breeding wader surveys: common snipe *Gallinago gallinago*. Several other non-target species were also recorded.

The results of the surveys can be seen in **Appendix D**, **Figures 1.2 to 1.6**, **Appendix C** and **Table 3-3**. Total observations include all observations made during a survey visit and includes multiple observations of the same individual. Peak count figures are the largest number of unique individuals recorded across any one survey visit.

Breeding status was evaluated against the criteria as set out in section 2.3.1 for snipe and **Appendix C** for all other species.

| Species                                              | Total Observations |             | Peak Count   | Breeding |                       |
|------------------------------------------------------|--------------------|-------------|--------------|----------|-----------------------|
|                                                      | Visit 1 April      | Visit 2 May | Visit 3 June |          | Status                |
| Common<br>buzzard<br><i>Buteo buteo</i>              | 2                  | 3           | 4            | 2        | Possibly<br>breeding  |
| Common<br>crossbill<br><i>Loxia</i><br>curvirostra   | 2                  | -           | -            | 2        | Non-<br>breeding      |
| Common<br>kestrel <i>Falco</i><br><i>tinnunculus</i> | -                  | 1           | 1            | 1        | Possibly<br>breeding  |
| Common<br>linnet <i>Linaria</i><br>cannabina         | 4                  | 16          | 30           | 18       | Confirmed<br>breeding |
| Common<br>snipe                                      | 2                  | -           | -            | 2        | Possibly breeding     |
| Common<br>starling                                   | 4                  | -           | 39           | 27       | Possibly breeding     |

Table 3-3: Results from Breeding Wader Surveys April- June 2024



| Species                                                     | T             | Total Observations |              | Peak Count | Breeding             |
|-------------------------------------------------------------|---------------|--------------------|--------------|------------|----------------------|
|                                                             | Visit 1 April | Visit 2 May        | Visit 3 June |            | Status               |
| Cuckoo<br>Cuculus<br>canorus                                | -             | -                  | 1            | 1          | Possibly<br>breeding |
| Eurasian<br>sparrowhawk<br><i>Accipiter</i><br><i>nisus</i> | -             | 1                  | -            | 1          | Possibly<br>breeding |
| Goldcrest<br><i>Regulus</i><br><i>regulus</i>               | 2             | -                  | -            | 2          | Possibly<br>breeding |
| Meadow pipit<br>Anthus<br>pratensis                         | 1             | 7                  | 7            | 1          | Probable<br>breeding |
| Northern<br>raven Corvus<br>corax                           | 2             | 1                  | -            | 2          | Possibly<br>breeding |
| Willow<br>warbler<br>Phylloscopus<br>trochilus              | 4             | 3                  | 5            | 1          | Possibly<br>breeding |

#### 3.2.1 Common Buzzard

This species was recorded from April to June, mostly consisting of single birds with one pair seen in June. Common buzzard was evaluated as possibly breeding after being recorded in suitable habitat. This species was seen along the electricity line, circling in coniferous plantation c. 100 m south of the electricity line, circling c. 400 m west of the electricity line and flying southwest within the 500 m buffer zone. They were also seen perched in trees in the field adjacent to the electricity line and within the substation boundary.

#### 3.2.2 Common Crossbill

This species was recorded once in April with a pair seen flying over fields c. 150 m adjacent to the electricity cable and were evaluated as non-breeding.

#### 3.2.3 Common Kestrel

Common kestrel was recorded in May and June as single birds flying across the substation fields and flying in fields c. 350 m adjacent to the electricity cable. As it was suitable habitat for common kestrel, this species was evaluated as possibly breeding.

#### 3.2.4 Common Linnet

This species was recorded from April to June in the breeding season seen along the electricity cable route and in the fields adjacent, mostly in wet grasslands, hedgerows and scrubby areas. The peak count of 18 birds was recorded in June. This species was evaluated as confirmed breeding as recently fledged birds were recorded with adults on multiple instances.

#### 3.2.5 Common Snipe

Common snipe was recorded twice in April in suitable habitat and were flushed during the survey. This species was seen c. 125 m south of the electricity cable route and flew southeast and was also seen further south c. 50 m from the cable route and flew west. Common snipe was evaluated as possibly breeding after being recorded in suitable habitat, but no drumming or display behaviours were observed.

#### 3.2.6 Common Starling

This species was recorded in April and June in the breeding season, observed flying over the electricity cable route in April and seen in a field c. 50 m southeast of the cable route before flying southeast. The peak count of 27 birds was recorded in June. Starling was evaluated as possibly breeding with birds observed in suitable habitat during the breeding season.

#### 3.2.7 Cuckoo

A single cuckoo was observed singing in suitable habitat in June c. 125 m south of the electricity cable route and was evaluated as possibly breeding.

#### 3.2.8 Eurasian Sparrowhawk

A single Eurasian sparrowhawk was recorded in May in fields c. 100 m adjacent to the electricity cable, circling over woodland. This species has been evaluated as possibly breeding as it was observed in suitable habitat in the breeding season.

#### 3.2.9 Goldcrest

A pair of Goldcrest was recorded in April along the electricity grid route near a coniferous treeline. This species was recorded singing in suitable habitat and evaluated as possibly breeding.

#### 3.2.10 Meadow Pipit

Single meadow pipits were observed from April to June in the breeding season along the electricity cable route and in the fields adjacent. This species was recorded on multiple occasions in agricultural grassland, wet grassland and scrub, exhibiting agitated behaviours; consequently, this species has been evaluated as probably breeding.

#### 3.2.11 Northern Raven

This species was recorded twice in the breeding season in April with a pair seen c. 200 m west of the electricity cable and in May with a single bird observed c. 300 m northwest of the control centre over conifer plantation. This species was evaluated as possibly breeding due to observations in suitable habitat.

#### 3.2.12 Willow Warbler

Single birds were recorded from April to June observed along the electricity cable route (typically within 50 m) and in the fields of the substation. Birds were observed singing on every occasion and were evaluated as possibly breeding.

# 4.0 Summary and Conclusions

Breeding wader surveys were carried out at the Project Site during the 2024 breeding bird season.

There were two observations of common snipe in suitable habitat during the breeding wader survey in April, which indicates that this species is possibly breeding within the 500 m buffer. Breeding snipe represent a constraint to the Project as they could be disturbed by construction activities if there is a breeding territory in the same location. However, no drumming or other display behaviours were observed and so there is no evidence of any breeding territories within vicinity of the Project.

The following incidental species that have not already been discussed were recorded during breeding wader surveys:

- Raptors: Common buzzard, common kestrel, Eurasian sparrowhawk;
- Northern raven; and
- Passerines: Meadow pipit, willow warbler, common crossbill, cuckoo, goldcrest, common linnet, common starling.

Common linnet was confirmed breeding within 500 m of the Project Site, and the remaining species were possibly breeding within the 500 m buffer surrounding the electricity cable route and substation. It would be prudent to undertake nest checks for these species prior to construction to avoid destruction of nests until breeding has finished.

### 5.0 Legal and Conservation Status of Target Species Recorded

**Table 5-1** summarises the legal and conservation status of the target species recorded during the range of ornithology surveys mentioned above.

| Primary or secondary<br>target | Species (BTO Code)        | Legal & conservation status in<br>Ireland |
|--------------------------------|---------------------------|-------------------------------------------|
| Primary                        | Common snipe (SN)         | BoCCI4 Red                                |
| Incidental                     | Common buzzard (BZ)       | BoCCI4 Green                              |
|                                | Common kestrel (K.)       | BoCCI4 Red                                |
|                                | Eurasian sparrowhawk (SH) | BoCCI4 Green                              |
|                                | Northern raven (RN)       | BoCCl4 Green                              |
|                                | Meadow pipit (MP)         | BoCCI4 Red                                |
|                                | Common crossbill (CR)     | BoCCI4 Green                              |
|                                | Willow warbler (WW)       | BoCCI4 Amber                              |
|                                | Common linnet (LI)        | BoCCI4 Amber                              |
|                                | Common starling (SG)      | BoCCI4 Amber                              |
|                                | Goldcrest (GC)            | BoCCI4 Amber                              |
|                                | Cuckoo (CK)               | BoCCI4 Green                              |

Table 5-1: Legal and Conservation Status of Target Species



# Appendix A Survey Times, Dates & Observations

## **Electricity Line & Substation Breeding Wader Report**

#### White Hill Wind Farm

White Hill Wind Farm Ltd

SLR Project No.:501.065427.00001

4 October 2024



| Date        | Surveyor | Start<br>(hh:mm) | End<br>(hh:mm) | Survey<br>duration<br>(hh:mm) |
|-------------|----------|------------------|----------------|-------------------------------|
| 24/04/2024  | АА       | 06:15            | 09:15          | 03:00                         |
| 24/04/2024  | AA       | 17:45            | 20:25          | 02:40                         |
| 24/05/2024  | AA       | 05:20            | 08:20          | 03:00                         |
| 24/05/2024  | AA       | 18:30            | 21:30          | 03:00                         |
| 11/06/2024  | AA       | 05:15            | 08:05          | 02:50                         |
| 11/06/2024  | AA       | 18:50            | 21:50          | 03:00                         |
| Total Hours |          |                  |                | 17:30                         |

| Table A-1: Time & Dates for Breedin | g Wader Surveys |
|-------------------------------------|-----------------|
|-------------------------------------|-----------------|



# Appendix B Weather Data

## **Electricity Line & Substation Breeding Wader Report**

#### White Hill Wind Farm

White Hill Wind Farm Ltd

SLR Project No.:501.065427.00001

4 October 2024



#### Weather Data key:

- Wind speed: expressed in Beaufort scale
- Cloud cover: expressed in Oktas (n/8)
- Visibility:
  - $\circ$  Poor < 1km = 0
  - Moderate 1-3 km = 1
  - $\circ$  Good >3 km = 2
- Rain:
  - $\circ$  None = 0
  - o Drizzle = 1
  - Light showers / snow = 2
  - Heavy showers / snow = 3
- Lying snow:
  - $\circ$  None = 0
  - On site = 1
  - On higher ground =2
- Frost:
  - $\circ$  None = 0
  - $\circ$  Ground = 1
  - $\circ$  All day = 2

#### Table B-1: Weather Data for Breeding Wader Surveys

| Date       | Start | End   | Survey<br>Hour | Wind<br>Speed <sup>11</sup> | Wind<br>Direction | Rain | Cloud<br>Cover | Cloud<br>Height | Visibility | Snow | Frost | Temp (°c) |
|------------|-------|-------|----------------|-----------------------------|-------------------|------|----------------|-----------------|------------|------|-------|-----------|
| 24/04/2024 | 06:15 | 09:15 | 1              | 2                           | N                 | 0    | 7              | 2               | 2          | 0    | 0     | 5         |
| 24/04/2024 | 06:15 | 09:15 | 2              | 2                           | Ν                 | 0    | 6              | 2               | 2          | 0    | 0     | 5         |
| 24/04/2024 | 06:15 | 09:15 | 3              | 2                           | Ν                 | 0    | 6              | 2               | 2          | 0    | 0     | 6         |
| 24/04/2024 | 17:45 | 20:25 | 1              | 2                           | Ν                 | 0    | 7              | 2               | 2          | 0    | 0     | 12        |
| 24/04/2024 | 17:45 | 20:25 | 2              | 1                           | Ν                 | 0    | 8              | 2               | 2          | 0    | 0     | 12        |
| 24/04/2024 | 17:45 | 20:25 | 3              | 1                           | Ν                 | 0    | 8              | 2               | 2          | 0    | 0     | 12        |
| 24/05/2024 | 05:20 | 08:20 | 1              | 2                           | W                 | 0    | 7              | 2               | 2          | 0    | 0     | 8         |

| Date       | Start | End   | Survey<br>Hour | Wind<br>Speed <sup>11</sup> | Wind<br>Direction | Rain | Cloud<br>Cover | Cloud<br>Height | Visibility | Snow | Frost | Temp (°c) |
|------------|-------|-------|----------------|-----------------------------|-------------------|------|----------------|-----------------|------------|------|-------|-----------|
| 24/05/2024 | 05:20 | 08:20 | 2              | 3                           | W                 | 0    | 8              | 2               | 2          | 0    | 0     | 9         |
| 24/05/2024 | 05:20 | 08:20 | 3              | 3                           | W                 | 0    | 8              | 2               | 2          | 0    | 0     | 7         |
| 24/05/2024 | 18:30 | 21:30 | 1              | 2                           | SW                | 0    | 7              | 2               | 2          | 0    | 0     | 13        |
| 24/05/2024 | 18:30 | 21:30 | 2              | 3                           | SW                | 0    | 7              | 2               | 2          | 0    | 0     | 13        |
| 24/05/2024 | 18:30 | 21:30 | 3              | 2                           | SW                | 0    | 8              | 2               | 2          | 0    | 0     | 12        |
| 11/06/2024 | 05:15 | 08:05 | 1              | 2                           | NW                | 0    | 0              | 2               | 2          | 0    | 0     | 5         |
| 11/06/2024 | 05:15 | 08:05 | 2              | 2                           | NW                | 0    | 0              | 2               | 2          | 0    | 0     | 12        |
| 11/06/2024 | 05:15 | 08:05 | 3              | 2                           | NW                | 0    | 1              | 2               | 2          | 0    | 0     | 12        |
| 11/06/2024 | 18:50 | 21:50 | 1              | 3                           | NW                | 0    | 5              | 2               | 2          | 0    | 0     | 14        |
| 11/06/2024 | 18:50 | 21:50 | 2              | 3                           | NW                | 0    | 5              | 2               | 2          | 0    | 0     | 13        |
| 11/06/2024 | 18:50 | 21:50 | 3              | 2                           | NW                | 0    | 4              | 2               | 2          | 0    | 0     | 12        |



# Appendix C Survey Data

## **Electricity Line & Substation Breeding Wader Report**

#### White Hill Wind Farm

White Hill Wind Farm Ltd

SLR Project No.:501.065427.00001

4 October 2024



Breeding Status (Codes)

- Non-breeding: flying over (F), suspected to be on migration (M), suspected to be summering non-breeder (U)
- Possible breeding: observed in breeding season in suitable nesting habitat (H), singing or calling in breeding season in suitable breeding habitat on one visit (S)
- Probable breeding: pair in suitable habitat in breeding season (P), territorial behaviour seen on >1 survey visit (T), courtship/display (D), visiting probable nest site (N), agitated behaviour (A), nest building/excavation (B)
- Confirmed breeding: distraction display (DD), used nest / eggs found (UN), recently fledged young (FL), adults entering/leaving nest site or incubating (ON), adult carrying food for young or faecal sac (FF), nest with eggs (NE), nest with young (NY)

| Date       | BTO code | Target<br>(Y/N) | No. seen | Time<br>observed | Breeding<br>status (see<br>key above) | Notes                                 |
|------------|----------|-----------------|----------|------------------|---------------------------------------|---------------------------------------|
| 24/04/2024 | RN       | N               | 2        | 06:15            | н                                     |                                       |
| 24/04/2024 | MP       | N               | 1        | 06:56            | S                                     |                                       |
| 24/04/2024 | CR       | N               | 2        | 07:04            | F                                     |                                       |
| 24/04/2024 | WW       | N               | 1        | 07:54            | S                                     |                                       |
| 24/04/2024 | LI       | N               | 1        | 08:02            | S                                     |                                       |
| 24/04/2024 | LI       | N               | 1        | 08:06            | S                                     |                                       |
| 24/04/2024 | SG       | N               | 2        | 08:10            | F                                     |                                       |
| 24/04/2024 | WW       | N               | 1        | 08:28            | S                                     |                                       |
| 24/04/2024 | BZ       | N               | 1        | 08:30            | н                                     |                                       |
| 24/04/2024 | ww       | N               | 1        | 08:41            | S                                     |                                       |
| 24/04/2024 | SN       | Y               | 1        | 06:51            | н                                     | Flushed<br>from fields<br>+ left area |
| 24/04/2024 | SN       | Y               | 1        | 09:01            | н                                     | Flushed<br>from fields<br>+ left area |
| 24/04/2024 | LI       | N               | 2        | 17:50            | S                                     |                                       |
| 24/04/2024 | SG       | N               | 2        | 17:51            | н                                     |                                       |
| 24/04/2024 | GC       | N               | 2        | 18:36            | S                                     |                                       |
| 24/04/2024 | BZ       | N               | 1        | 20:02            | Н                                     |                                       |
| 24/04/2024 | WW       | Ν               | 1        | 20:11            | S                                     |                                       |

#### Table C-1: Data from Breeding Wader Surveys

 $<sup>^{\</sup>rm 12}$  See section 5.0 for BTO

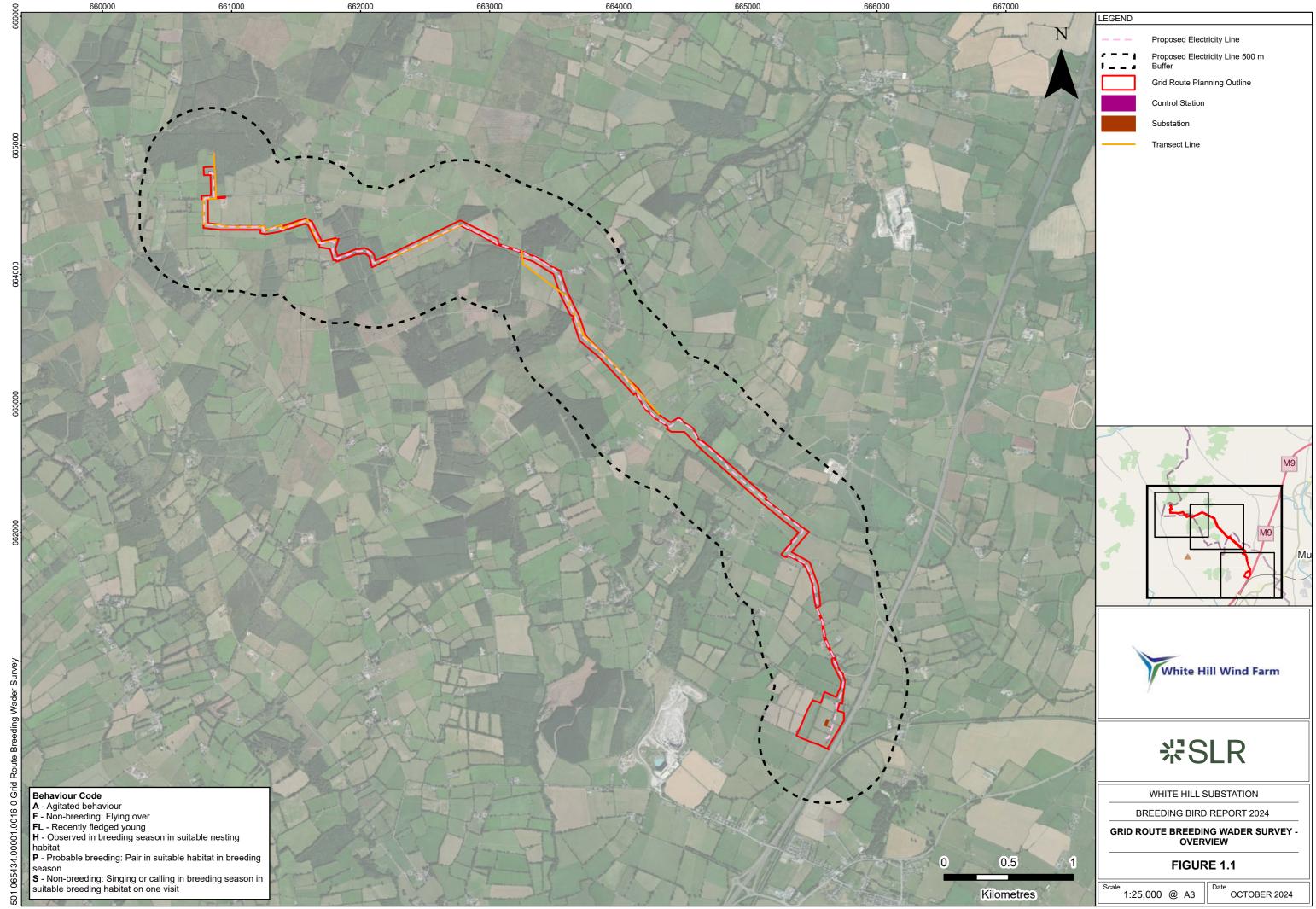
| Date       | BTO code | Target<br>(Y/N) | No. seen | Time<br>observed | Breeding<br>status (see<br>key above) | Notes |
|------------|----------|-----------------|----------|------------------|---------------------------------------|-------|
| 25/05/2024 | BZ       | N               | 1        | 05:50            | Н                                     |       |
| 25/05/2024 | MP       | N               | 1        | 06:22            | A                                     |       |
| 25/05/2024 | LI       | Ν               | 2        | 06:25            | Р                                     |       |
| 25/05/2024 | LI       | N               | 2        | 06:31            | Р                                     |       |
| 25/05/2024 | MP       | N               | 1        | 06:33            | A                                     |       |
| 25/05/2024 | LI       | N               | 6        | 06:38            | F                                     |       |
| 25/05/2024 | MP       | N               | 1        | 06:59            | S                                     |       |
| 25/05/2024 | MP       | N               | 1        | 07:15            | S                                     |       |
| 25/05/2024 | WW       | Ν               | 1        | 07:17            | S                                     |       |
| 25/05/2024 | SH       | N               | 1        | 07:18            | Н                                     |       |
| 25/05/2024 | LI       | N               | 2        | 07:50            | Р                                     |       |
| 25/05/2024 | WW       | Ν               | 1        | 08:13            | S                                     |       |
| 25/05/2024 | LI       | Ν               | 2        | 18:58            | Р                                     |       |
| 25/05/2024 | LI       | Ν               | 1        | 18:59            | Н                                     |       |
| 25/05/2024 | LI       | N               | 1        | 19:04            | S                                     |       |
| 25/05/2024 | K.       | N               | 1        | 19:12            | Н                                     |       |
| 25/05/2024 | BZ       | Ν               | 1        | 19:17            | Н                                     |       |
| 25/05/2024 | WW       | N               | 1        | 19:28            | S                                     |       |
| 25/05/2024 | RN       | N               | 1        | 19:58            | Н                                     |       |
| 25/05/2024 | MP       | Ν               | 1        | 20:22            | Н                                     |       |
| 25/05/2024 | MP       | N               | 1        | 20:25            | А                                     |       |
| 25/05/2024 | MP       | N               | 1        | 20:46            | A                                     |       |
| 25/05/2024 | BZ       | N               | 1        | 21:11            | Н                                     |       |
| 11/06/2024 | WW       | Ν               | 1        | 05:16            | S                                     |       |
| 11/06/2024 | WW       | N               | 1        | 05:22            | S                                     |       |
| 11/06/2024 | WW       | N               | 1        | 05:26            | S                                     |       |
| 11/06/2024 | WW       | N               | 1        | 06:05            | S                                     |       |
| 11/06/2024 | MP       | N               | 1        | 06:19            | S                                     |       |
| 11/06/2024 | СК       | N               | 1        | 07:15            | S                                     |       |
| 11/06/2024 | MP       | N               | 1        | 07:19            | S                                     |       |
| 11/06/2024 | LI       | N               | 4        | 07:21            | FL                                    |       |
| 11/06/2024 | SG       | N               | 12       | 07:22            | F                                     |       |
| 11/06/2024 | MP       | N               | 1        | 07:25            | S                                     |       |

| Date       | BTO code | Target<br>(Y/N) | No. seen | Time<br>observed | Breeding<br>status (see<br>key above) | Notes                |
|------------|----------|-----------------|----------|------------------|---------------------------------------|----------------------|
| 11/06/2024 | LI       | Ν               | 2        | 07:30            | F                                     |                      |
| 11/06/2024 | MP       | N               | 1        | 18:53            | S                                     |                      |
| 11/06/2024 | LI       | N               | 6        | 18:55            | FL                                    | Ad +Juv              |
| 11/06/2024 | SG       | N               | 27       | 18:59            | F                                     |                      |
| 11/06/2024 | MP       | N               | 1        | 19:03            | S                                     |                      |
| 11/06/2024 | BZ       | N               | 1        | 19:09            | Н                                     |                      |
| 11/06/2024 | WW       | N               | 1        | 19:33            | S                                     |                      |
| 11/06/2024 | LI       | N               | 18       | 20:16            | FL                                    | Ad +Juv              |
| 11/06/2024 | BZ       | N               | 2        | 20:21            | Н                                     |                      |
| 11/06/2024 | MP       | N               | 1        | 20:22            | А                                     |                      |
| 11/06/2024 | BZ       | N               | 1        | 20:25            | F                                     | Flushed<br>from tree |
| 11/06/2024 | MP       | Ν               | 1        | 20:27            | А                                     |                      |
| 11/06/2024 | К.       | N               | 1        | 21:11            | F                                     | Flushed<br>from tree |

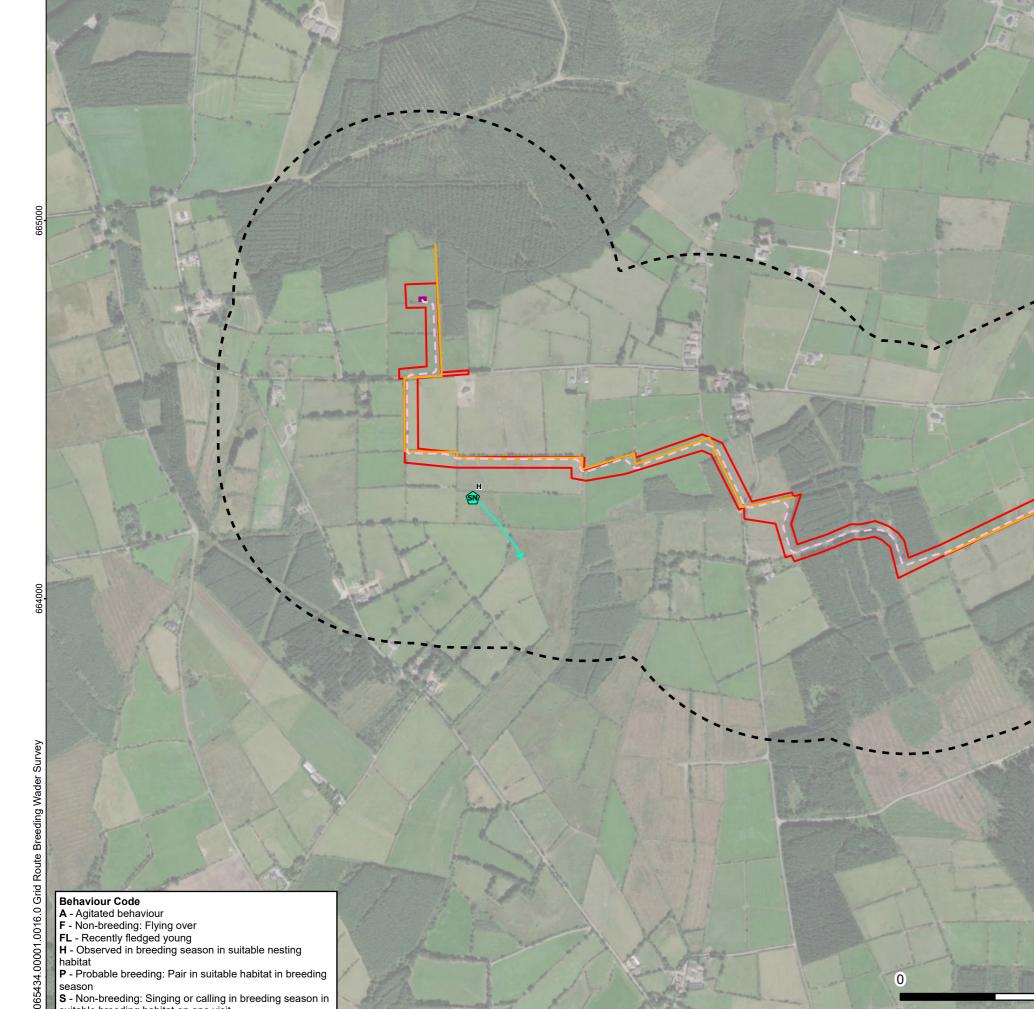


# Appendix D Figures

# **Electricity Line & Substation Breeding Wader Report**


#### White Hill Wind Farm

White Hill Wind Farm Ltd


SLR Project No.:501.065427.00001

4 October 2024



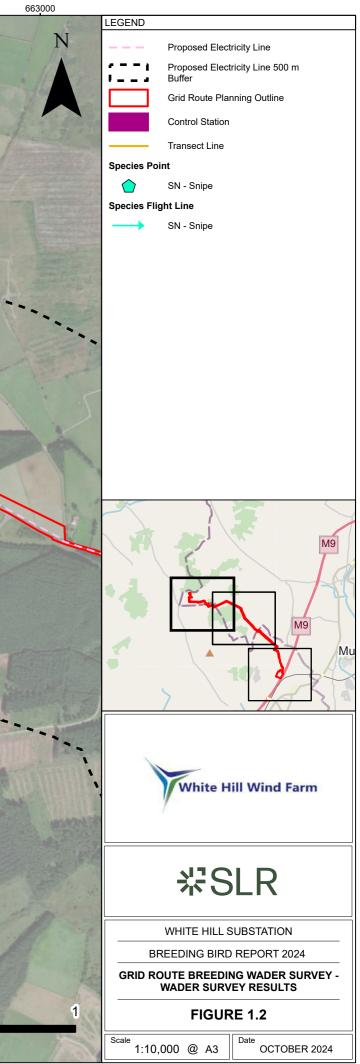


Aerial Imagery (2024): Earthstar Geographics, Map data © OpenStreetMap contributors, Microsoft, Facebook, Inc. and its affiliates, Esri Community Maps contributors, Map lay@ ThisEdrawing and its content are the copyright of SLR Consulting Ltd and may not be reproduced or amended except by prior written permission. SLR Consulting Ltd accepts no liability for any amendments made by other persons.



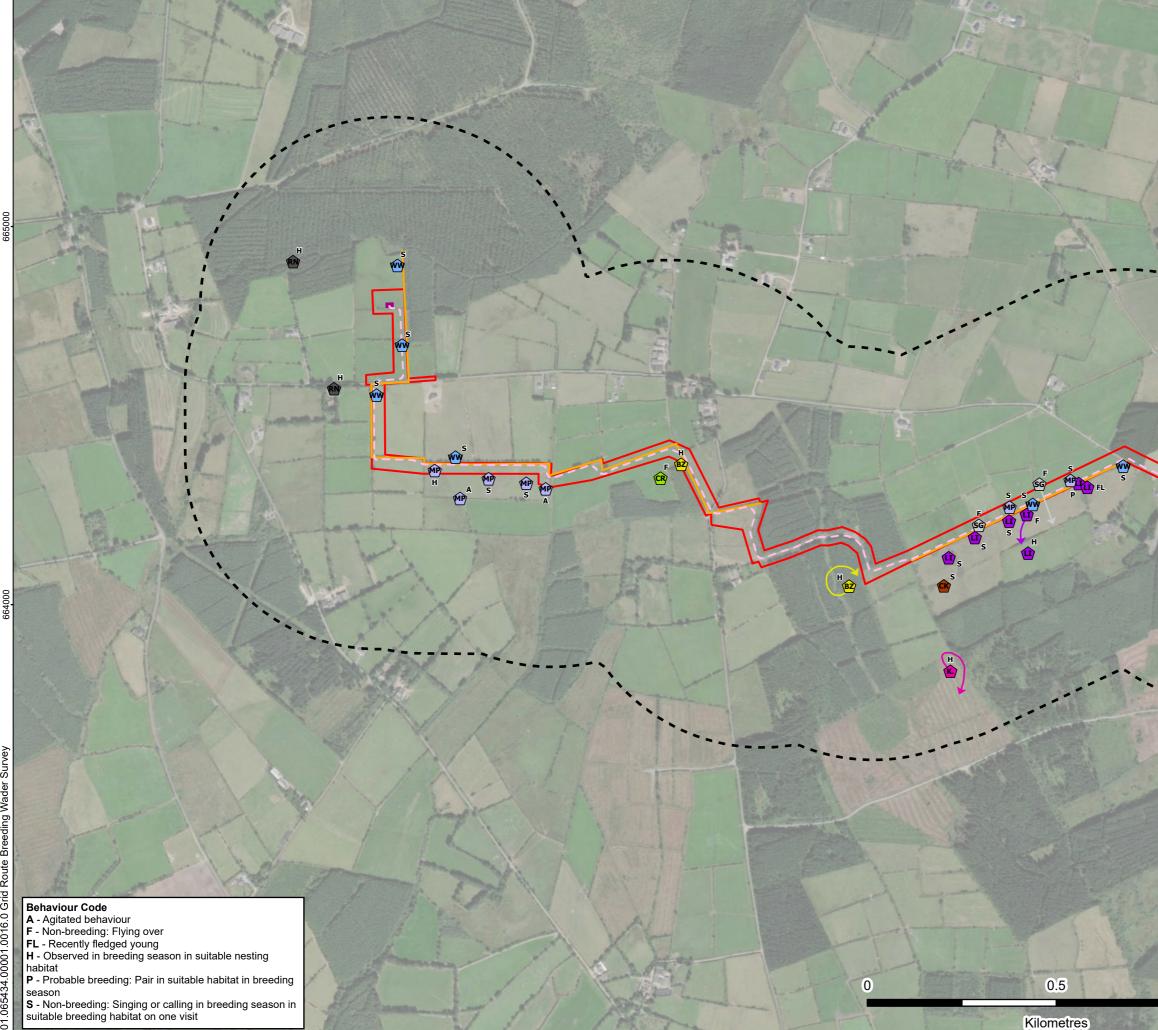
661000

662000


žÓ

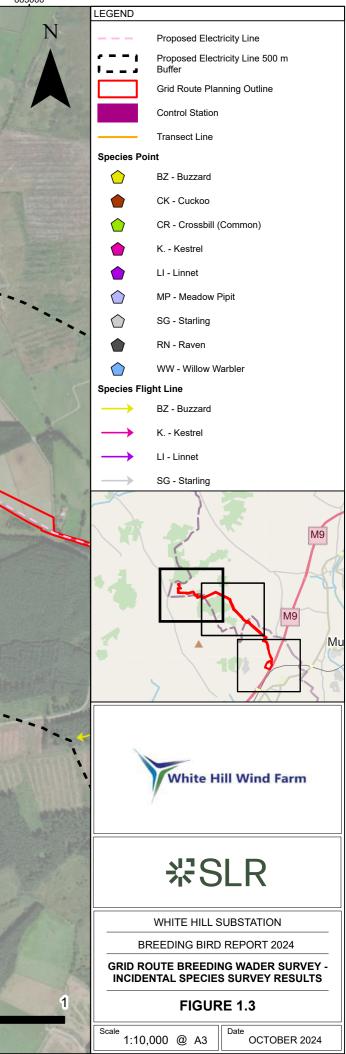
season

**S** - Non-breeding: Singing or calling in breeding season in suitable breeding habitat on one visit


660000

Aerial Imagery (2024): Maxar, Microsoft, Map data © OpenStreetMap contributors, Microsoft, Facebook, Inc. and its affiliates, Esri Community Maps contributors, Map layer by ©iThis drawing and its content are the copyright of SLR Consulting Ltd and may not be reproduced or amended except by prior written permission. SLR Consulting Ltd accepts no liability for any amendments made by other persons.




0.5

Kilometres

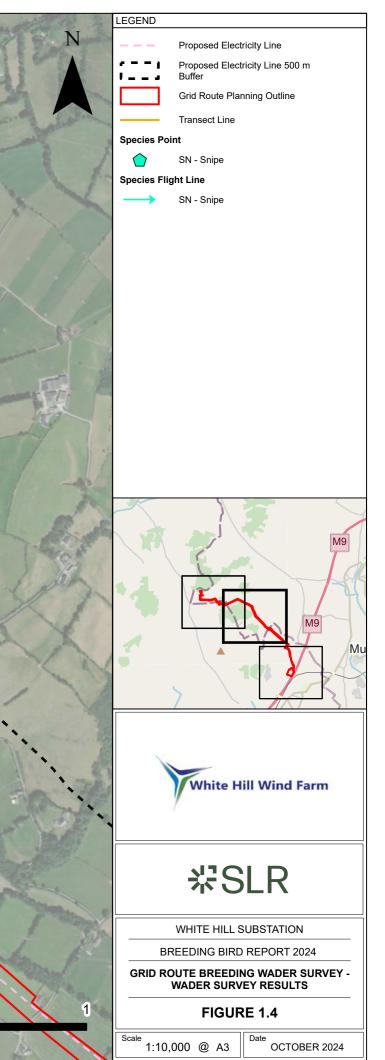


662000

660000



- A Agitated behaviour F Non-breeding: Flying over FL Recently fledged young
- H Observed in breeding season in suitable nesting
- habitat **P** - Probable breeding: Pair in suitable habitat in breeding
- season **S** - Non-breeding: Singing or calling in breeding season in suitable breeding habitat on one visit


0

Kilometres

0.5

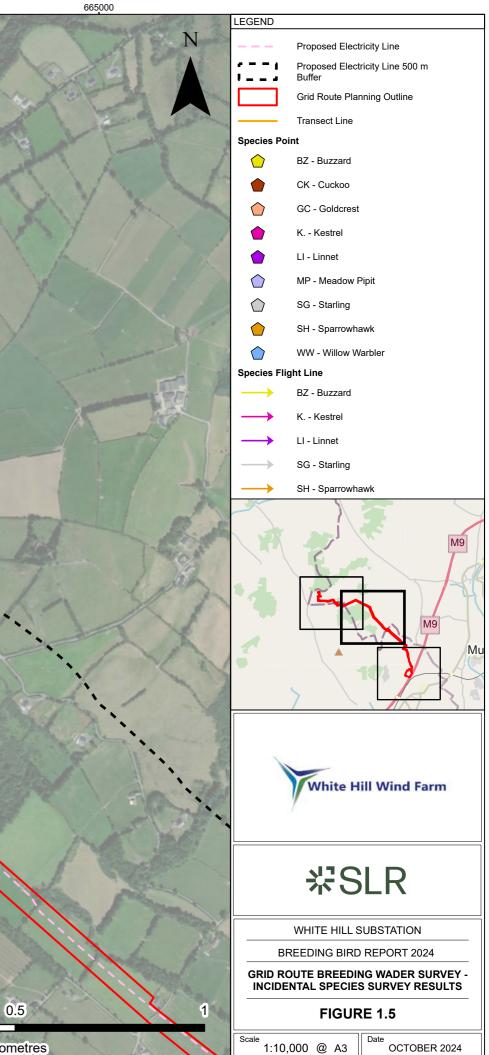
Aerial Imagery (2024): Maxar, Microsoft, Map data © OpenStreetMap contributors, Microsoft, Facebook, Inc. and its affiliates, Esri Community Maps contributors, Map layer by ©iThis drawing and its content are the copyright of SLR Consulting Ltd and may not be reproduced or amended except by prior written permission. SLR Consulting Ltd accepts no liability for any amendments made by other persons.

501





BZ


H BZ

Ś

FWF S

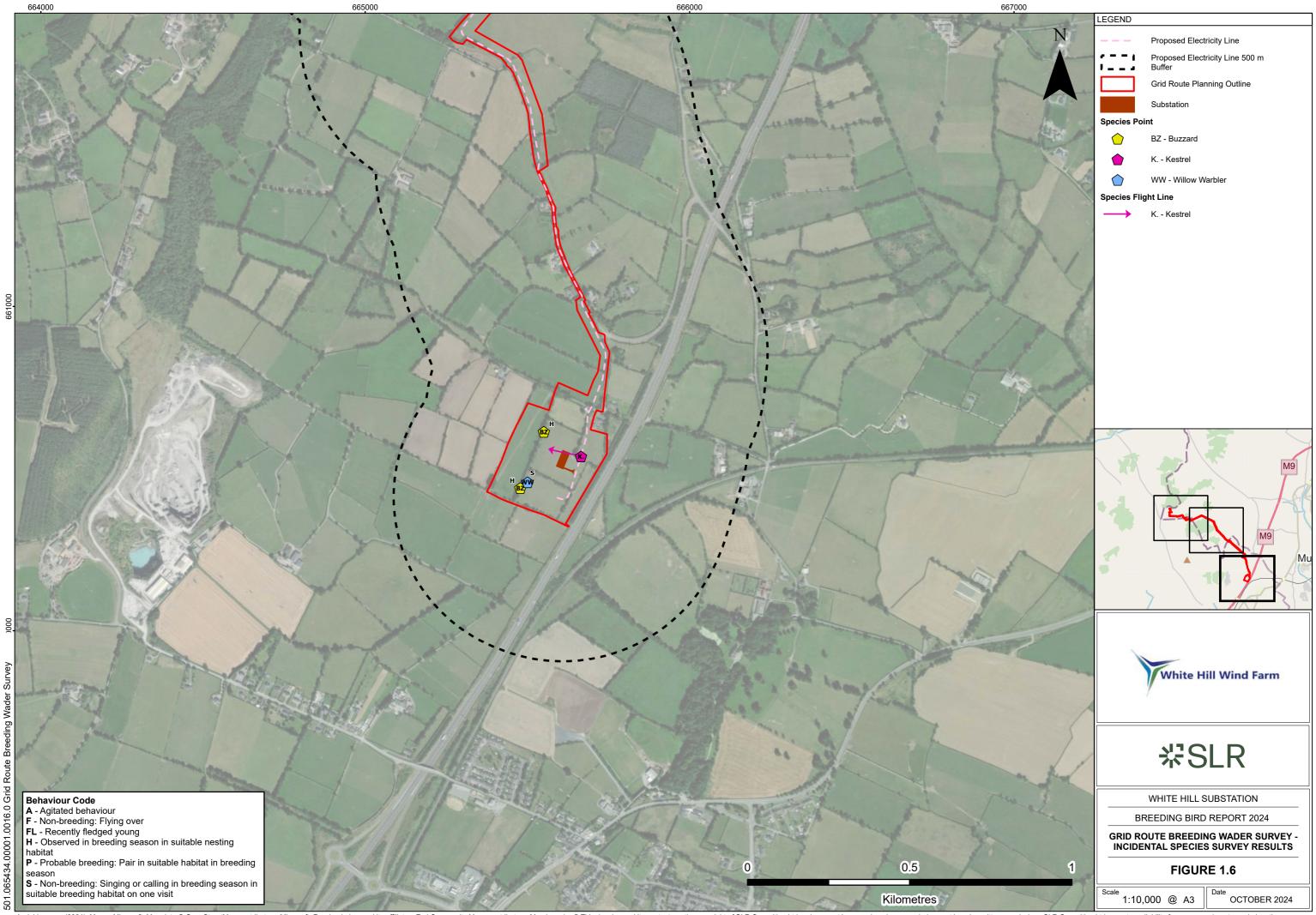
H SH

0



501

33000


#### Behaviour Code

- A Agitated behaviour
- **F** Non-breeding: Flying over **FL** Recently fledged young
- H Observed in breeding season in suitable nesting habitat

H

- **P** Probable breeding: Pair in suitable habitat in breeding season
- S Non-breeding: Singing or calling in breeding season in suitable breeding habitat on one visit

Aerial Imagery (2024): Maxar, Microsoft, Map data © OpenStreetMap contributors, Microsoft, Facebook, Inc. and its affiliates, Esri Community Maps contributors, Map layer by ©iThis drawing and its content are the copyright of SLR Consulting Ltd and may not be reproduced or amended except by prior written permission. SLR Consulting Ltd accepts no liability for any amendments made by other persons.





## Appendix D Abridged Hydrology Chapter

### **Natura Impact Statement**

White Hill Wind Farm Electricity Substation & Electricity Line

White Hill Wind Limited

SLR Project No.: 501.065427.00001

28 January 2025





White Hill Wind Farm Electricity Substation & Electricity Line

# Environmental Impact Assessment Report

# Chapter 7: Water (Abridged)

## White Hill Wind Limited

Galetech Energy Services Clondargan, Stradone, Co. Cavan Ireland Telephone +353 (0)49 555 5050 www.galetechenergyservices.com





#### Methodology

#### Desk Study

A desk study of the project site and its environs, including the site of the permitted White Hill Wind Farm, was completed in advance of undertaking the walkover survey, field mapping and site investigations. This involved collecting all relevant geological, hydrological, hydrogeological and meteorological information for the project site and surrounding area. The desk study included consultation of the following data sources:-

- Environmental Protection Agency database (www.epa.ie);
- Geological Survey of Ireland Groundwater Database (www.gsi.ie);
- Met Eireann Meteorological Databases (www.met.ie);
- National Parks & Wildlife Services Public Map Viewer (www.npws.ie);
- EPA/Water Framework Directive Map Viewer (www.catchments.ie);
- Bedrock Geology 1:100,000 Scale Map Series, Sheet 19 (Bedrock Geology of Carlow - Wexford);
- Bedrock Geology 1:100,000 Scale Map Series, Sheet 16 (Geology of Kildare -Wicklow); Geological Survey of Ireland (GSI, 1994);
- Geological Survey of Ireland (2004) Groundwater Body Initial Characterization Reports;
- OPW Flood Maps (www.floodinfo.ie);
- GSI Groundwater Flood mapping (www.gsi.ie); and,
- Aerial photography (www.bing.com/maps, www.google.com/maps).

#### Baseline Monitoring and Site Investigations

As part of the White Hill Wind Farm EIAR, baseline monitoring and drainage mapping were undertaken by HES on 31 August 2021 and on 10 and 30 March 2022. Trial pits were undertaken at the wind farm site on 6 October 2021, including at the location of the electrical control unit (refer to **Chapter 6**).

Specific site investigations, including additional trial pits and hydrological assessments, at the project site (described below) were undertaken on 24 October 2024.

In summary, site investigations to inform the preparation of this chapter comprise the following:-

- Walkover surveys and hydrological mapping of the project site (including electricity line route) and the surrounding area were undertaken. Water flow directions and drainage patterns were also recorded;
- 3 no. trial pits were undertaken at the electricity substation location to investigate subsoil depth and lithology along with groundwater conditions (i.e. possible inflows);
- Field hydrochemistry measurements (electrical conductivity, pH, dissolved oxygen and temperature) were taken to determine the origin and nature of surface water flows; and,
- Surface water sampling (2 no. samples) was undertaken to determine the baseline water quality of the primary surface waters originating in the area of the project site.



#### Receptor Sensitivity/Importance/Impact Criteria

Using the National Roads Authority (NRA 2009) guidance, an estimation of the importance of the water environment within and downstream of the project site are quantified by applying the importance criteria set out at **Table 7.1** and **Table 7.2**; the impact magnitude is assessed using **Table 7.3** and **Table 7.4** and the impact rating using **Table 7.5**.

| Importance        | Criteria                                                                                           | Typical Example                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Extremely<br>High | <ul> <li>Attribute has a high quality or<br/>value on an international scale.</li> </ul>           | <ul> <li>River, wetland or surface water body<br/>ecosystem protected by EU legislation, e.g.<br/>'European sites' designated under the<br/>Habitats Regulations or 'Salmonid Waters'<br/>designated pursuant to the European<br/>Communities (Quality of Salmonid Waters)<br/>Regulations, 1988.</li> </ul>                                                                                                                                          |
| Very High         | <ul> <li>Attribute has a high quality or<br/>value on a regional or national<br/>scale.</li> </ul> | <ul> <li>River, wetland or surface water body<br/>ecosystem protected by national legislation –<br/>NHA status.</li> <li>Regionally important potable water source<br/>supplying &gt;2500 homes.</li> <li>Quality Class A (Biotic Index Q4).</li> <li>Flood plain protecting more than 50<br/>residential or commercial properties from<br/>flooding.</li> <li>Nationally important amenity site for wide<br/>range of leisure activities.</li> </ul> |
| High              | • Attribute quality or value on a local scale.                                                     | <ul> <li>Salmon fishery Locally important potable water source supplying &gt;1000 homes.</li> <li>Quality Class B (Biotic Index Q3-4).</li> <li>Flood plain protecting between 5 and 50 residential or commercial properties from flooding.</li> <li>Locally important amenity site for wide range of leisure activities.</li> </ul>                                                                                                                  |
| Medium            | <ul> <li>Attribute has a medium quality<br/>or value on a local scale.</li> </ul>                  | <ul> <li>Coarse fishery.</li> <li>Local potable water source supplying &gt;50<br/>homes Quality Class C (Biotic Index Q3, Q2-3).</li> <li>Flood plain protecting between 1 and 5<br/>residential or commercial properties from<br/>flooding.</li> </ul>                                                                                                                                                                                               |
| Low               | <ul> <li>Attribute has a low quality or<br/>value on a local scale.</li> </ul>                     | <ul> <li>Locally important amenity site for small range of leisure activities.</li> <li>Local potable water source supplying &lt;50 homes.</li> <li>Quality Class D (Biotic Index Q2, Q1) Flood plain protecting 1 residential or commercial property from flooding.</li> <li>Amenity site used by small numbers of local people.</li> </ul>                                                                                                          |

#### Table 7.1: Estimation of Importance of Hydrology Criteria (NRA, 2009)

| Importance        | Criteria                                                           | Typical Example                                                                                          |
|-------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Extremely<br>High | • Attribute has a high quality or value on an international scale. | <ul> <li>Groundwater supports river, wetland or<br/>surface water body ecosystem protected by</li> </ul> |



|           |                                                                                                    | EU legislation, e.g. SAC or SPA status.                                                                                                                                                                                                                                                                                                                                 |
|-----------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Very High | <ul> <li>Attribute has a high quality or<br/>value on a regional or national<br/>scale.</li> </ul> | <ul> <li>Regionally Important Aquifer with multiple wellfields.</li> <li>Groundwater supports river, wetland or surface water body ecosystem protected by national legislation – NHA status.</li> <li>Regionally important potable water source supplying &gt;2500 homes Inner source protection area for regionally important water source.</li> </ul>                 |
| High      | • Attribute quality or value on a local scale.                                                     | <ul> <li>Regionally Important Aquifer Groundwater</li> <li>Provides large proportion of baseflow to local rivers.</li> <li>Locally important potable water source supplying &gt;1000 homes.</li> <li>Outer source protection area for regionally.</li> <li>important water source.</li> <li>Inner source protection area for locally important water source.</li> </ul> |
| Medium    | <ul> <li>Attribute has a medium quality<br/>or value on a local scale.</li> </ul>                  | <ul> <li>Locally Important Aquifer</li> <li>Potable water source supplying &gt;50 homes.</li> <li>Outer source protection area for locally important water source.</li> </ul>                                                                                                                                                                                           |
| Low       | <ul> <li>Attribute has a low quality or value on a local scale.</li> </ul>                         | <ul> <li>Poor Bedrock Aquifer Potable water source<br/>supplying &lt;50 homes.</li> </ul>                                                                                                                                                                                                                                                                               |

#### Table 7.2: Estimation of Importance of Hydrogeology Criteria (NRA, 2009)

| Magnitude           | Criteria                                                                                                                      | Typical Examples                                                                                                                                                                                                                                                                                               |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Large<br>Adverse    | <ul> <li>Results in loss of attribute and /or<br/>quality and integrity of attribute</li> </ul>                               | <ul> <li>Loss or extensive change to a waterbody or<br/>water dependent.</li> <li>Habitat Increase in predicted peak flood<br/>level &gt;100mm.</li> <li>Extensive loss of fishery Calculated risk of<br/>serious pollution incident &gt;2% annually.</li> <li>Extensive reduction in amenity value</li> </ul> |
| Moderate<br>Adverse | <ul> <li>Results in impact on integrity of<br/>attribute or loss of part of<br/>attribute</li> </ul>                          | <ul> <li>Increase in predicted peak flood level &gt;50mm.</li> <li>Partial loss of fishery.</li> <li>Calculated risk of serious pollution incident &gt;1% annually.</li> <li>Partial reduction in amenity value.</li> </ul>                                                                                    |
| Small<br>Adverse    | <ul> <li>Results in minor impact on<br/>integrity of attribute or loss of<br/>small part of attribute</li> </ul>              | <ul> <li>Increase in predicted peak flood level &gt;10mm.</li> <li>Minor loss of fishery.</li> <li>Calculated risk of serious pollution incident &gt;0.5% annually.</li> <li>Slight reduction in amenity value.</li> </ul>                                                                                     |
| Negligible          | <ul> <li>Results in an impact on attribute<br/>but of insufficient magnitude to<br/>affect either use or integrity</li> </ul> | <ul> <li>Negligible change in predicted peak flood<br/>level.</li> <li>Calculated risk of serious pollution incident<br/>&lt;0.5% annually.</li> </ul>                                                                                                                                                         |

#### Table 7.3: Magnitude of Hydrology Impact (NRA, 2009)



| Magnitude           | Criteria                                                                                                   | Typical Examples                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Large<br>Adverse    | Results in loss of attribute and /or<br>quality and integrity of attribute                                 | <ul> <li>Removal of large proportion of aquifer.</li> <li>Changes to aquifer or unsaturated zone<br/>resulting in extensive change to existing water<br/>supply springs and wells, river baseflow or<br/>ecosystems.</li> <li>Possible high risk of pollution to groundwater<br/>from routine run-off.</li> <li>Calculated risk of serious pollution incident<br/>&gt;2% annually.</li> </ul>   |
| Moderate<br>Adverse | Results in impact on integrity of<br>attribute or loss of part of<br>attribute                             | <ul> <li>Removal of moderate proportion of aquifer<br/>Changes to aquifer or unsaturated zone<br/>resulting in moderate change to existing<br/>water supply springs and wells, river baseflow<br/>or ecosystems.</li> <li>Possible medium risk of pollution to<br/>groundwater from<br/>routine run-off.</li> <li>Calculated risk of serious pollution incident<br/>&gt;1% annually.</li> </ul> |
| Small<br>Adverse    | Results in minor impact on<br>integrity of attribute or loss of<br>small part of attribute                 | <ul> <li>Removal of small proportion of aquifer<br/>Changes to aquifer or unsaturated zone<br/>resulting in minor change to water supply<br/>springs and wells, river baseflow or<br/>ecosystems.</li> <li>Possible low risk of pollution to groundwater<br/>from routine run-off.</li> <li>Calculated risk of serious pollution incident<br/>&gt;0.5% annually.</li> </ul>                     |
| Negligible          | • Results in an impact on attribute<br>but of insufficient magnitude to<br>affect either use or integrity. | <ul> <li>Calculated risk of serious pollution incident<br/>&lt;0.5% annually.</li> </ul>                                                                                                                                                                                                                                                                                                        |

#### Table 7.4: Magnitude of Hydrogeology Impact (NRA, 2009)

|                          | Magnitude of Impact |                      |                      |                      |
|--------------------------|---------------------|----------------------|----------------------|----------------------|
| Importance<br>of Tribute | Negligible          | Small Adverse        | Moderate Adverse     | Large Adverse        |
| Extremely<br>High        | Imperceptible       | Significant          | Profound             | Profound             |
| Very High                | Imperceptible       | Significant/Moderate | Profound/Significant | Profound             |
| High                     | Imperceptible       | Moderate/Slight      | Significant/Moderate | Profound/Significant |
| Medium                   | Imperceptible       | Slight               | Moderate             | Significant          |
| Low                      | Imperceptible       | Imperceptible        | Slight               | Slight/Moderate      |

#### Table 7.5: Estimation of Impact Rating (NRA, 2009)

#### Consultation

The scope of this assessment has also been informed by consultation with statutory



consultees and other bodies with environmental responsibility in the Republic of Ireland.

This consultation process is outlined in **Chapter 1** of this EIAR. Issues, matters and recommendations highlighted by the responses in relation to the water environment are summarised in **Table 7.6** below. The full responses from each of the below consultees are provided in **Annex 1.7**.

| Consultee                         | Summary of Consultee Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Response<br>Addressed in<br>Section                      |
|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| Carlow County<br>Council          | • The EIAR and planning application for the substation<br>and grid connection must address the direct effects<br>and short, medium and long term, permanent and<br>temporary, positive and negative, secondary<br>cumulative and transboundary effects of the whole<br>project, i.e. the wind energy development and the<br>grid connection.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Section 7.4                                              |
| Geological<br>Survey of Ireland   | <ul> <li>Our records show that there are groundwater drinking water abstractions (Paulstown Public Water Supply (PWS) and Castlewarren Group Water Scheme (GWS)) with zones of contribution/source within the grid connection route. Key to groundwater protection in general, and protection of specific drinking water supplies, is preventing ingress of runoff to the aquifer. Design of drainage will need to be cognisant of the public water schemes and the interactions between surface water and groundwater as well as run-off. Appropriate design should be undertaken by qualified and competent persons to include mitigation measures as necessary, such as SUDs or other drainage mitigation measures.</li> <li>Any excavation/cuttings required for realignment should ensure that groundwater abstraction points is not disrupted, resulting in diminished yields. Note that there could be other groundwater abstractions in the locality for which Geological Survey Ireland has not undertaken studies, and a robust assessment should be undertaken by qualified and competent persons including a survey of all current wells and water abstractions within the vicinity</li> </ul> | Sections 7.3.7,<br>7.3.12, 7.4.3.8,<br>7.5.1.7 & 7.6.1.7 |
| Inland Fisheries<br>Ireland (IFI) | <ul> <li>During the construction and operational phases, the applicant should adhere to the recommendations and guidelines outlined in IFI's Guidelines on Protection of Fisheries during Construction Works in and adjacent to Waters 2016.</li> <li>Existing watercourse crossings for the proposed grid connection route should be utilised where possible.</li> <li>Where existing crossings must undergo alteration, IFI request that these are upgraded in the interests of habitat improvement and biodiversity enhancement.</li> <li>Crossings should be designed to meet IFI's Fisheries Construction Guidelines referred to above.</li> <li>The storage, management and conveyance of materials must not permit any deleterious matter to reach surface water systems either directly or indirectly.</li> <li>Instream works may only take place during the period</li> </ul>                                                                                                                                                                                                                                                                                                                    | Sections 7.4.3.1,<br>7.4.3.6, 7.5.1.1,<br>7.5.1.6        |



|               | <ol> <li>July to 30 September.</li> <li>SuDS principles should be incorporated into surface<br/>water management plans to attenuate any run-off of<br/>suspended solids or other deleterious matter.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                          |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| Uisce Éireann | <ul> <li>Based on the documentation submitted it does not appear that there are any Uisce Eireann assets in the vicinity of the proposed substation or cabling routes.</li> <li>It is noted that there is a privately owned water infrastructure in close proximity to the proposed cabling to the west of Baunreagh at the entrance to the wind farm.</li> <li>There is an existing Uisce Éireann abstraction point to the west downstream from the proposed cabling works in Bagenalstown. The EIAR must include and consider all direct, indirect and cumulative effects on the abstraction point.</li> <li>Generic advice with respect protection of water supply infrastructure, surface waters and groundwater was provided.</li> </ul> | Sections 7.3.7,<br>7.3.12, 7.4.3.8,<br>7.5.1.7 & 7.6.1.7 |

#### Table 7.6: Summary of Scoping Responses

#### Study Area

The study area (including cumulative assessment) for the water environment includes the Monefelin River, Paulstown Stream, Moanmore Stream and Old Leighlin Stream sub-catchments (refer to **Sections 7.3.3** and **7.3.4** below).

Any effects further downstream at the River Barrow are not expected due to large flows in the River Barrow (assimilative capacity) and due to the fact that the project is distributed across 4 no. sub-catchments and is not concentrated within a single sub-catchment. The hydrogeological study area is also covered by the above catchments.

#### Limitations and Difficulties Encountered

No limitations or difficulties were encountered during the preparation of the water chapter.

#### Description of the Existing Environment

#### Designated Sites & Habitats

Within the Republic of Ireland, designated sites include Natural Heritage Areas (NHAs), proposed Natural Heritage Areas (pNHAs), Special Areas of Conservation (SAC), candidate Special Areas of Conservation (cSACs) and Special Protection Areas (SPAs).

The project site is not located within any designated conservation site. Designated sites in the wider vicinity of the project site are illustrated at **Figure 7.7**.

All of the river waterbodies that drain the project site flow into the River Barrow and River Nore cSAC (Site Code: 002162) to the southeast.

At its closest point, this designated site is located approximately 2.7km to the east (as crow flies) and downstream of the substation location.



The Whitehall Quarries pNHA (Site Code: 000855) is situated c. 500m to the southwest of the electricity line at its nearest point and is c. 1.5km northwest of the substation. There is no hydrological connectivity to this designated site.

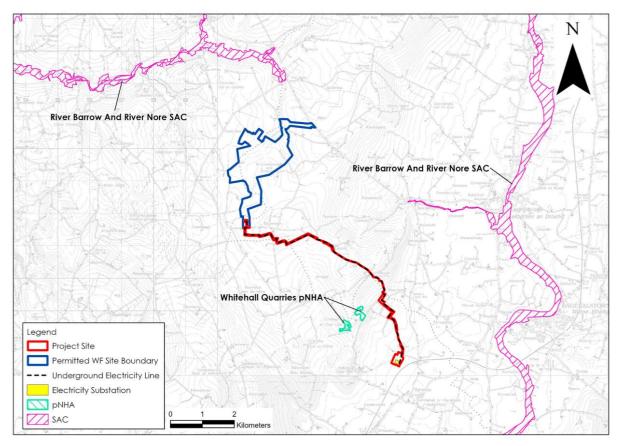



Figure 7.7: Designated Sites

#### Receptor Sensitivity

Due to the nature of the project, being near surface construction activity, effects on groundwater are generally imperceptible. The primary risk to groundwater at the project site would be from cementitious materials, hydrocarbon spillage and leakages, albeit the volumes present on-site will be small.

These are common possible effects on all construction sites (such as road works and industrial sites). All contamination sources are to be carefully managed at the project site during the construction, operational and decommissioning phases of the project and mitigation measures are proposed below to avoid and manage any likelihood of effects.

The majority of the project site is also covered in poorly draining soil, poorly productive bedrock or thick glacial tills (i.e. substation) which acts as a protective cover to the underlying aquifer. Any contaminants which may be accidently released on-site are more likely to affect local surface water features, via runoff, rather than infiltrate groundwaters.

Surface waters such as the Monefelim River, Paulstown Stream, Moanmore Stream and Old Leighlin Stream are classed as High to Very High Importance and are very sensitive to potential contamination.

Sections of the electricity line route are located inside the Castlewarren GWS SPA



and the Paulstown PWS SPA. Furthermore, the electrical control unit and sections of the underground electricity is located within the Monefelim River/Paulstown Stream catchment which forms part of the Paulstown PWS SPA. A 0.5km section of the electricity line is also likely to be located within the groundwater catchment of the Shankill GWS spring.

The likelihood of effects on both these groundwater supplies is relatively low due to the localised and shallow nature of the electricity line and electrical control unit (in terms of groundwater flow disturbance), the poor productivity of the bedrock aquifers along the electricity line route within the SPAs, as well as the large set back distance of the majority of the project from the Monefelim River and Paulstown Stream.

The sensitivity of the Uisce Éireann abstraction point on the River Barrow at Bagenalstown is also low due to the large assimilative capacity of the River Barrow (large flows) and the fact that only 1.3km of the electricity line is located within the potential catchment to this source.

The designated sites that are hydraulically connected (surface water flow paths only) to the project include the River Barrow and River Nore cSAC and has an Extremely High Importance. This designated site can be considered very sensitive in terms of potential impacts

Comprehensive surface water and groundwater protection measures and controls are outlined below to ensure protection of all downstream receiving waters and groundwater supplies.

Mitigation measures will ensure that surface runoff from the project site will be of a high quality and will not affect the quality of downstream surface water bodies. Any introduced drainage works at the project site will mimic the existing hydrological regime thereby avoiding changes to flow volumes leaving the project site.

#### **Description of Likely Effects**

#### Hydrological Effects on Designated Sites

The project site is hydrologically connected to the River Barrow and River Nore cSAC (Site Code: 002162). At its closest point, this designated site is located approximately 3.5km to the east (as crow flies) of the electricity substation and is downstream (hydrologically connected) via the Moanmore Stream, Monefelim River, Paulstown Stream and Old Leighlin Stream.

Surface water effects in the downstream River Barrow are assessed as unlikely to be significant due to dilution/assimilation capacity effects in the River Barrow channel. Also, the project drains to the River Barrow via several sub-catchments (i.e. Moanmore Stream, Monefelim River, Paulstown Stream and Old Leighlin Stream) which also significantly dilutes any potential of significant effects in the River Barrow.

Notwithstanding this, surface water management and mitigation is proposed to protect local surface water and avoid significant negative downstream surface water quality effects.

| Attribute         | Description                                      |
|-------------------|--------------------------------------------------|
| Receptor          | Down-gradient water quality and designated sites |
| Pathway/Mechanism | Surface water flow-paths                         |



| Pre-Mitigation Effect | Indirect, negative, slight, short term, unlikely effect |
|-----------------------|---------------------------------------------------------|
|                       |                                                         |

#### Table 7.19: Effects on Designated Sites

#### Mitigation & Monitoring Measures

The overarching objective of the proposed mitigation measures is to ensure that all surface water runoff is comprehensively attenuated such that no silt or sediment laden waters or deleterious material is discharged into the local drainage system. A Surface Water Management Plan (SWMP), incorporating the surface water drainage design has been prepared for the electricity substation and electrical control unit, see **Annex 3.5** (**Volume II**), and incorporates the principles of Sustainable Drainage Systems (SuDS) through an arrangement of surface water drainage infrastructure.

While the SuDS, overall, is an amalgamation of a suite of drainage infrastructure; the overall philosophy is straightforward. In summary:-

- Clean water drains will be installed upslope of the works area to intercept clean surface water to prevent it becoming contaminated by silt/sediment from construction activities;
- All surface water runoff from construction areas will be directed to specially constructed downslope dirty water drains surrounding all areas of ground proposed to be disturbed (including areas for the temporary storage of material);
- The swales will direct runoff into stilling ponds and, subsequently, lagoon-type settlement ponds<sup>1</sup> where silt/sediment will be allowed to settle; and,
- Following the settlement of silt/sediment, clean water will be discharged to the local drainage network or to ground via buffered outfalls or level spreaders thus ensuring that no scouring occurs.

The suite of surface water drainage infrastructure will include *inter alia* upslope clean water drains, downslope dirty water drains, sedimats, flow attenuation and filtration check dams, stilling ponds, lagoon-type settlement ponds and buffered outfalls or level spreaders.

The design criteria implemented as part of the SuDS are as follows:-

- To minimise alterations to the ambient site hydrology and hydrogeology;
- To provide settlement and treatment controls as close to the site footprint as possible and to replicate, where possible, the existing hydrological environment of the site;
- To minimise sediment loads resulting from the development run-off during the construction phase;
- To preserve greenfield runoff rates and volumes;
- To strictly control all surface water runoff such that no silt or other pollutants shall enter watercourses and that no artificially elevated levels of downstream siltation or no plumes of silt arise when substratum is disturbed;
- To provide settlement ponds to encourage sedimentation and storm water runoff settlement;

<sup>&</sup>lt;sup>1</sup> The design of the lagoon-type sediment ponds shall generally accord with the principles Altmüller R. & Dettmer, R. (2006) Successful species protection measures for the Freshwater Pearl Mussel (Margaritifera margaritifera) through the reduction of unnaturally high loading of silt and sand in running waters – Experiences within the scope of the Lutterproject.



- To reduce stormwater runoff velocities throughout the site to prevent scouring and encourage settlement of sediment locally; and,
- To manage erosion and allow for the effective revegetation of bare surfaces.

#### Construction Phase

Earthworks (Removal of Vegetation Cover, Excavations, Trenching and Stock Piling) Resulting in Suspended Solids Entrainment in Surface Water)

#### Electricity Substation and Electrical Control Unit

The management of surface water runoff and subsequent treatment prior to release off-site will be undertaken during construction work as follows:-

- Prior to the commencement of earthworks, silt fencing will be placed downgradient of the construction areas, as required, until the full range of construction phase measures are installed;
- These will be embedded into the local soils to ensure all site water is captured and filtered;
- Clean water drains will include check dams to control flow rates and avoid erosion or scouring of the drain;
- Water from the clean drains will be discharged by a buffered outfall or level spreader at greenfield runoff rates;
- Water will be discharged from the clean drains over natural grassland or to existing agricultural drains which will provide further filtration;
- All surface water runoff from works areas, excavations, stockpiles at the electricity substation site and electrical control unit site will be intercepted by downslope drains which will also include check dams;
- These dirty water drains will direct water to stilling ponds where water for treatment and attenuation;
- From the stilling ponds, water will be discharged to lagoon-type settlement ponds for final treatment. The settlement ponds will follow a design outlined by Altmuller and Dettmer (2006);
- The treated water will then be discharged via a buffered outfall or level spreader, at greenfield rates, over natural grassland which will provide additional filtration and treatment;
- The precise design, sizing and sitting of the drainage infrastructure will be confirmed as part of the post-consent detailed design process, however the design will be reflective of predicted rainfall levels with an appropriate allowance for climate change
- Daily monitoring of the excavation/earthworks, the water treatment and pumping system and the discharge areas will be completed by a suitably qualified person during the construction phase. All necessary preventative measures will be implemented to ensure no entrained sediment, or deleterious matter will enter the main drainage channel;
- If high levels of silt or other contamination is noted in the pumped water or the treatment systems, all construction works will be stopped. No works will recommence until the issue is resolved and the cause of the elevated source is remedied; and,
- Earthworks will take place during periods of low rainfall to reduce run-off and potential siltation of watercourses.



The construction of the site drainage system will be carried out, at the respective locations, prior to other activities being commenced. The construction of the drainage system will only be carried out during periods of, where possible, no rainfall, therefore avoiding runoff. This will avoid the risk of entrainment of suspended sediment in surface water runoff, and transport via this pathway to surface watercourses. Construction of the drainage system during this period will also ensure that attenuation features associated with the drainage system will be in place and functional for all subsequent construction works.

#### Electricity Line

The majority of the underground electricity line is in excess of 50m from any nearby watercourse with the exception of the 5 no. watercourse crossings.

No in-stream works are required at the crossing locations as HDD is proposed, however due to the proximity of the watercourses to the construction works, there is a risk of surface water quality impacts during trench excavation work.

Mitigation measures which are outlined below will be implemented to ensure that silt laden or contaminated surface water runoff from the trenching work does not discharge directly to the water:-

- All existing dry drains that intercept the works area will be temporarily blocked down-gradient of the works using temporary check dams/silt traps (e.g. straw bales);
- Clean water diversion drains will be installed upgradient of the works areas, as required;
- Check dams/silt fence arrangements (silt traps or straw bales) will be placed in all existing drains that have surface water flows and also along existing roadside drains; and,
- A double silt fence perimeter will be placed down-slope of works areas that are located inside the watercourse 50m buffer zones such as at watercourse crossing locations.

Specific mitigation measures relating to the directional drilling at the crossing location are detailed in **Section 7.5.1.6** below.

#### Pre-emptive Site Drainage Management

The works programme for the construction stage of the project will also take account of weather forecasts, and predicted rainfall in particular. Large excavations and movements of soil/subsoil or vegetation stripping will be suspended or scaled back if prolonged or intense rain is forecast. The extent to which works will be scaled back or suspended will relate directly to the amount of rainfall forecast.

The following forecasting systems are available and will be used on a daily basis at the site to direct proposed construction activities:-

- General Forecasts: Available on a national, regional and county level from the Met Eireann website (www.met.ie/forecasts). These provide general information on weather patterns including rainfall, wind speed and direction but do not provide any quantitative rainfall estimates;
- Meteo Alarm: Alerts to the possible occurrence of severe weather for the next 2-days. Less useful than general forecasts as only available on a provincial scale;



- 3-hour Rainfall Maps: Forecast quantitative rainfall amounts for the next 3-hours but does not account for possible heavy localised events;
- Rainfall Radar Images: Images covering the entire country are freely available from the Met Eireann website (www.met.ie/latest/rainfall\_radar.asp). The images are a composite of radar data from Shannon and Dublin airports and give a picture of current rainfall extent and intensity. Images show a quantitative measure of recent rainfall. A 3-hour record is given and is updated every 15-minutes. Radar images are not predictive; and,
- Consultancy Service: Met Eireann provide a 24-hour telephone consultancy service. The forecaster will provide interpretation of weather data and give the best available forecast for the area of interest.

The use of safe threshold rainfall values will allow work to be safely controlled (from a water quality perspective) in the event of an impending high rainfall intensity event.

Works will be suspended if forecasting suggests either of the following is likely to occur:-

- >10 mm/hr (i.e. high intensity local rainfall events);
- >25 mm in a 24-hour period (heavy frontal rainfall lasting most of the day); or,
- >half monthly average rainfall in any 7 days.

Prior to works being suspended, the following control measures should be completed:-

- Secure all open excavations;
- Provide temporary or emergency drainage to prevent back-up of surface runoff; and,
- Avoid working during heavy rainfall and for up to 24-hours after heavy events to ensure drainage systems are not overloaded.

#### Excavation Dewatering and Effects on Surface Water Quality

The management of excavation dewatering (pumping), particularly in relation to any accumulation of water in foundations or electricity line trenches, and subsequent treatment prior to discharge into the drainage network will be undertaken as follows:-

- Appropriate interceptor drainage, to prevent upslope surface runoff from entering excavations, will be installed as relevant;
- The interceptor drainage will not be discharged directly to surface waters to ensure that Greenfield runoff rates are mimicked;
- If required, pumping of excavation inflows will prevent build up of water in the excavation;
- All pumped water will be directed to the surface water drainage system for treatment prior to discharge. In the case of the electricity line, any pumped waters will be discharged over grassland to allow for filtration;
- There will be no direct discharge to local drains, and therefore no risk of hydraulic loading or contamination will occur;
- Daily monitoring of site excavations by the EM will occur during the construction phase. If high levels of seepage inflow occur, excavation work at this location will cease immediately and a geotechnical assessment undertaken; and,
- A mobile 'Siltbuster' or similar equivalent specialist treatment system will be available on-site for emergencies. Siltbusters are mobile silt traps that can



remove fine particles from water using a proven technology and hydraulic design in a rugged unit. The mobile units are specifically designed for use on construction-sites and will be used as final line of defence, if required.

#### Release of Hydrocarbons during Construction and Storage

Mitigation measures proposed to avoid release of hydrocarbons at the site are as follows:-

- The volume of fuels or oils stored on site will be minimised. All fuel and oil will be stored in an appropriately bunded area within the temporary construction compounds. Only an appropriate volume of fuel will be stored at any given time. The bunded area will be roofed to avoid the ingress of rainfall and will be fitted with a storm drainage system and an appropriate oil interceptor;
- All bunded areas will have 110% capacity of the volume to be stored;
- On site re-fuelling of machinery will be carried out using a mobile double skinned fuel bowser. The fuel bowser, a double-axel custom-built refuelling trailer, will be re-filled at the temporary compound and will be towed around the site by a 4x4 jeep to where plant and machinery is located. The 4x4 jeep will also be fully stocked with fuel absorbent material and pads in the event of any accidental spillages. The fuel bowser will be parked on a level area in the construction compound when not in use and only designated trained and competent operatives will be authorised to refuel plant on site. Mobile measures such as drip trays and fuel absorbent mats will be used during all refuelling operations to avoid any accidental leakages;
- All plant and machinery used during construction will be regularly inspected for leaks and fitness for purpose;
- Spill kits will be readily available to deal with and accidental spillage;
- All waste tar material arising from road cuttings (from trenching or other works in public roads) will be removed off-site and taken to a licensed waste facility. Due to the possibility of contamination of soils and subsoils, it is not proposed to utilise this material for any reinstatement works or for storage within the spoil deposition areas; and
- An outline emergency plan for the construction phase to deal with accidental spillages is contained within the Planning-Stage CEMP (Annex 3.5). This emergency plan will be further developed prior to the commencement of development, and will be agreed with the Planning Authority as part of the detailed CEMP.

#### Groundwater and Surface Water Contamination from Wastewater Disposal

Measures to avoid contamination of ground and surface waters by wastewaters will comprise:-

- Self contained port-a-loos (chemical toilets) with an integrated waste holding tank will be installed at the temporary construction compound, maintained by the providing contractor, and removed from site on completion of the construction works;
- Water supply for the site office and other sanitation will be brought to site and removed after use to be discharged at a suitable off-site treatment location; and,
- No water will be sourced on the site during construction, nor will any wastewater be discharged to the site.



#### Release of Cement-Based Products

The following mitigation measures are proposed to ensure that the release of cement-based products is avoided:-

- No batching of wet-cement products will occur on site. Ready-mixed concrete will be brought to site as required and, where possible, emplacement of precast products, will take utilised;
- Where concrete is delivered on site, only the chute will be cleaned, using the smallest volume of water practicable. Chute cleaning will be undertaken at lined cement washout ponds within the temporary construction compound with waters being tankered off site and disposed of at an approved licensed facility. There will be no discharge of cement contaminated waters to the construction drainage system or to any drain;
- Weather forecasting will be used to ensure that prolonged or intense rainfall is not predicted during concrete pouring activities; and,
- The pour site will be kept free of standing water and plastic covers will be ready in case of sudden rainfall event.

#### Morphological Changes to Surface Watercourses & Drainage Patterns

Temporary silt fencing/silt trap arrangements (e.g. straw bales) will be placed within existing roadside/field drainage features along the electricity line route to remove any suspended sediments from the works area.

The trapped sediment will be removed and disposed of at an appropriate licenced facility. Any bare-ground will be re-seeded/reinstated immediately and silt fencing temporally left in place if necessary.

The following mitigation measures are proposed in respect of the installation of the culvert over the unnamed stream to the north of the electricity substation:-

- The stream crossing will be a clear span bridge (bottomless culvert) and the stream bed will remain undisturbed. No in-stream excavation works are proposed or anticipated as being required and therefore there will be no impact on the stream;
- At the time of construction, all guidance/best practice requirements of the Office of Public Works (OPW) or Inland Fisheries Ireland will be incorporated into the design/construction of the proposed watercourse/culvert crossings;
- As a further precaution, in-stream construction work (if required) will only be carried out during the period permitted by Inland Fisheries Ireland for in-stream works according to Guidelines on Protection of Fisheries During Construction Works in and Adjacent to Waters (2016) (i.e., July to September inclusive). This time period coincides with the period of lowest expected rainfall, and therefore minimum runoff rates. This will minimise the risk of entrainment of suspended sediment in surface water runoff, and transport via this pathway to surface watercourses (any deviation from this will be done in discussion with the IFI); and,
- The installation of the culvert will require a Section 50 license application to the OPW in accordance with the Arterial Drainage Act 1945. The stream crossing will be designed in accordance with OPW guidelines/requirements on applying for a Section 50 consent.

#### Directional Drilling



- Although no in-stream works are proposed, the drilling works will only be done over a dry period between July and September (as required by IFI for in-stream works) to avoid the salmon spawning season and to have more favourable (dryer) ground conditions;
- The crossing works areas will be clearly marked out with fencing or flagging tape to avoid unnecessary disturbance;
- There will be no storage of material/equipment or overnight parking of machinery inside a 10m buffer zone which will be imposed around the watercourses;
- Before any ground works are undertaken, double silt fencing will be placed upslope of the watercourse channel along the 10m buffer zone boundary;
- Additional silt fencing or straw bales (pinned down firmly with stakes) will be placed across any natural surface depressions/channels that slope towards the watercourse;
- Silt fencing will be embedded into the local soils to ensure all site water is captured and filtered;
- The area around the bentonite batching, pumping and recycling plant will be bunded using terram (as it will clog) and sandbags in order to contain any spillages;
- Drilling fluid returns will be contained within a sealed tank/sump to prevent migration from the works area;
- Spills of drilling fluid will be clean up immediately and stored in an adequately sized skip before been taken off-site;
- If rainfall events occur during the works, there will be a requirement to collect and treat small volumes of surface water from areas of disturbed ground (i.e. soil and subsoil exposures created during site preparation works);
- This will be completed using a shallow swale and sump down slope of the disturbed ground; and water will be pumped to a proposed percolation area at least 50m from the watercourses;
- The discharge of water onto vegetated ground at the percolation area will be via a silt bag which will filter any remaining sediment from the pumped water. The entire percolation area will be enclosed by a perimeter of double silt fencing;
- Any sediment laden water from the works area will not be discharged directly to a watercourse or drain;
- Works shall not take place during periods of heavy rainfall and will be scaled back or suspended if heavy rain is forecasted;
- Daily monitoring of the works area, the water treatment and pumping system and the percolation area will be completed by a suitably qualified person during the construction phase. All necessary preventative measures will be implemented to ensure no entrained sediment, or deleterious matter is discharged to the watercourse;
- If high levels of silt or other contamination is noted in the pumped water or the treatment systems, all construction works will be stopped. No works will recommence until the issue is resolved and the cause of the elevated source is remedied;
- On completion of the works, the ground surface disturbed during the site preparation works and at the entry and exit pits will be carefully reinstated;
- The silt fencing upslope of the river will be left in place and maintained until the works area has been fully reinstated;



- There will be no batching or storage of cement allowed at the watercourse crossing;
- There will be no refuelling allowed within 100m of the watercourse crossing; and,
- All plant will be checked for purpose of use prior to mobilisation at the watercourse crossing.

A Fracture Blow-out (Frac-out) Prevention and Contingency Plan will be prepared by the drilling contractor prior to construction and will include the following measures:-

- The drilling fluid/bentonite will be non-toxic and naturally biodegradable (i.e., Clear Bore Drilling Fluid or similar will be used);
- The area around the drilling fluid batching, pumping and recycling plants will be bunded using terram and/or sandbags to contain any potential spillage;
- A double row of silt fencing will be placed between the works area and the adjacent river;
- Spills of drilling fluid will be cleaned up immediately and transported off-site for disposal at a licensed facility;
- Adequately sized skips will be used where temporary storage of arisings are required;
- The drilling process/pressure will be constantly monitored to detect any possible leaks or breakouts into the surrounding geology or local watercourse;
- This will be gauged by observation and by monitoring the pumping rates and pressures. If any signs of breakout occur then drilling will be immediately stopped;
- Any frac-out material will be contained and removed off-site;
- The drilling location will be reviewed, before re-commencing with a higher viscosity drilling fluid mix; and,
- If the risk of further frac-out is high, a new drilling alignment will be sought at the crossing location.

#### Hydrological Effects on Designated Sites

The proposed mitigation measures for protection of surface water quality, discussed above and further detailed at **Annex 3.5**, will ensure that the quality of runoff from the project will be very high and that no deleterious material is discharged to watercourses.

Surface water quality effects in the downstream River Barrow and River Nore cSAC, even in the absence of mitigation, are unlikely to be significant due to dilution/assimilation capacity effects in the River Barrow channel.

Also, the project drains to the River Barrow via several sub-catchments (i.e. Moanmore Stream, Monefelim River, Paulstown Stream and Old Leighlin Stream) which also significantly dilutes the likelihood of significant effects on the cSAC.

Considering the above hydrological setting and the wide ranging and comprehensive set of mitigation measures outlined above and further detailed at **Annex 3.5**, it is concluded that there is no likelihood of significant hydrological or water quality effects on any downstream designated site including the River Barrow and River Nore cSAC.



#### Operational Phase

#### Progressive Replacement of Natural Surface with Lower Permeability Surfaces

#### Stormwater Runoff

Stormwater control measures are as follows:-

- During the operational phase, stormwater from the substation and electrical control unit compound areas will be discharged to local drains or to ground via soakaways following attenuation;
- Stormwater discharge from the project site will be limited to greenfield runoff rates, therefore there will be no increase in storm water runoff rates entering the local environment;
- Runoff from the compound areas will also be passed through an oil interceptor to prevent any discharge of hydrocarbons.

#### Hydrocarbons and Chemicals

Proposed mitigation measures for storage of fuel and chemicals are outlined as follows:-

- All storage containers will be labelled appropriately, including hazardous markings;
- All holding tanks will be constructed of material appropriate for fuel/chemical storage and will be bunded to at least 110% of the maximum tank volume or 25% of the total capacity of all the tanks within the bund, whichever is greatest;
- All bulk tanks will be located within an impervious bund;
- Bunds will be to standard specified in CIRIA Report 163 'Construction of bunds for oil storage tanks' and CIRIA Report C535 'Above-ground proprietary prefabricated oil storage tank systems;
- Barrels and bunded containers will be stored upright and internally where appropriate and always on drip trays or sump pallets;
- Appropriate spill kits will be available at all storage locations;
- All fuel/chemical storage facilities will be subject to weekly inspection; and,
- Leaking or empty drums will be removed from the site immediately and disposed of via a registered waste disposal contractor.

#### Decommissioning Phase

As in the construction phase, surface runoff control measures will be put in place during decommissioning works. The drainage system at the electrical control unit will remain operational during the decommissioning phase and will serve to treat any sediment laden surface water run-off due to the renewed disturbance of soils. Following decommissioning, re-vegetation of excavated areas will be implemented as soon as practicable and monitored to ensure vegetation becomes fully established.

#### **Residual Effects**

#### Construction Phase

#### Hydrological Effects on Designated Sites

Considering the hydrological setting of the project (i.e. works spread across several



sub catchments and the high dilution capacity of the River Barrow), transient works and the wide ranging and comprehensive set of mitigation measures outlined above and further detailed at **Annex 3.5**, it is assessed that there is no likelihood of significant hydrological or water quality effects on any downstream designated site including the River Barrow and River Nore cSAC.

For the reasons outlined above, no significant effects are assessed as likely to occur.

#### **Operational Phase**

Following the implementation of appropriate mitigation measures, as outlined above, the residual effect is assessed to be direct, neutral, long term and likely; however, significant effects on surface water features are not likely.

#### Decommissioning Phase

No likely significant residual effects on the hydrological environment or on water quality are envisaged during the decommissioning stage of the project.

#### Monitoring

Ongoing monitoring of the surface water drainage system will be the responsibility of the EM. Prior to the commencement of development, a detailed Water Quality Inspection & Monitoring Plan (WQIMP) will be agreed with the Planning Authority as part of the detailed CEMP. The monitoring programme will comprise field testing and laboratory analysis of a range of agreed parameters.

The civil works contractor, who will be responsible for the construction of the site drainage system, and EM will undertake regular inspections of the drainage system to ensure that all measures are functioning effectively. Regular inspections of all installed drainage systems will be undertaken, especially after heavy rainfall, to check for blockages, and ensure there is no build-up of standing water in parts of the systems where it is not intended.

Any excess build-up of silt levels at any drainage features that may decrease the effectiveness of the drainage feature will be removed and disposed of at a licensed waste management facility.

#### Summary

During each phase of the project (construction, operation and decommissioning), a number of activities will take place on the site of the project which will have the potential to adversely affect the hydrological regime or water quality at the site or its vicinity. These likely effects generally arise from sediment input from runoff and other pollutants such as hydrocarbons and cement based compounds, with the former having the most likelihood for effect.

Surface water drainage measures, pollution control and other preventative measures have been incorporated into the project design to minimise any likely adverse effects on water quality and downstream designated sites.

The management of surface water is the principal means of significantly reducing sediment runoff arising from construction activities and to control runoff rates. The key surface water control measure is that there will be no direct discharge of site runoff into local watercourses.

Preventative measures also include fuel and concrete management and the



preparation of a final SWMP, which will be incorporated into the detailed CEMP, to be prepared prior to the commencement of development.

Overall, the project presents no likelihood for significant effects on surface or groundwater quality following the implementation of the proposed mitigation measures. Additionally, this assessment has determined that there is no likelihood for significant cumulative effects to arise as a result of the construction, operation or decommissioning of the project.



## Appendix E Planning-Stage CEMP

### **Natura Impact Statement**

White Hill Wind Farm Electricity Substation & Electricity Line

White Hill Wind Limited

SLR Project No.: 501.065427.00001

28 January 2025





White Hill Wind Farm Electricity Substation & Electricity Line

Environmental Impact Assessment Report

Annex 3.5: Planning-Stage Construction & Environmental Management Plan

White Hill Wind Limited

Galetech Energy Services Clondargan, Stradone, Co. Cavan Ireland Telephone +353 (0)49 555 5050 www.galetechenergyservices.com



### Contents

| 1.0 | Introduction1 |                                                 |    |  |
|-----|---------------|-------------------------------------------------|----|--|
|     | 1.1           | Purpose of this Report                          | 1  |  |
|     | 1.2           | Objectives of this CEMP                         | 1  |  |
|     | 1.3           | Structure of this CEMP                          | 1  |  |
|     | 1.4           | Roles & Responsibilities                        | 2  |  |
|     | 1.5           | Reporting Procedures                            | 2  |  |
| 2.0 | Desc          | ription of the Project                          | 2  |  |
| 3.0 | Gen           | eral Construction Sequence                      | 3  |  |
|     | 3.1           | Construction Method                             | 3  |  |
|     | 3.2           | Site Entrances                                  | 4  |  |
|     | 3.3           | Site Access Tracks                              | 5  |  |
|     | 3.4           | Temporary Construction Compound                 | 5  |  |
|     | 3.5           | Chemical Storage and Refuelling                 | 5  |  |
|     | 3.6           | Electricity Substation                          | 6  |  |
|     | 3.7           | Interface Masts & Underground Electricity Line  | 7  |  |
|     | 3.8           | Underground Electricity Line                    | 7  |  |
|     | 3.9           | Electrical Control Unit                         | 9  |  |
|     | 3.10          | Construction Waste Management                   | 9  |  |
|     | 3.11          | Construction Employment                         | 10 |  |
|     | 3.12          | Construction Traffic                            | 10 |  |
| 4.0 | Envir         | onmental Management Measures                    | 11 |  |
|     | 4.1           | 'Designed-In' Measures                          | 11 |  |
|     | 4.2           | Population & Human Health                       | 15 |  |
|     | 4.3           | Biodiversity                                    | 15 |  |
|     | 4.4           | Land & Soil                                     | 20 |  |
|     | 4.5           | Water                                           | 23 |  |
|     | 4.6           | Air Quality & Climate                           | 30 |  |
|     | 4.7           | Landscape                                       | 31 |  |
|     | 4.8           | Cultural Heritage                               | 31 |  |
|     | 4.9           | Noise & Vibration                               | 32 |  |
|     | 4.9.1         | Noise                                           | 32 |  |
|     | 4.9.2         | Vibration                                       | 33 |  |
|     | 4.10          | Transport & Access                              | 33 |  |
|     | 4.11          | Waste Management                                | 35 |  |
| 5.0 | Impl          | ementation of Environmental Management Measures | 35 |  |



| 6.0  | Communication Plan                           | 36 |  |
|------|----------------------------------------------|----|--|
| 7.0  | Staff Training & Environmental Awareness     | 36 |  |
| 8.0  | Emergency Response Procedures                | 37 |  |
| 9.0  | Recording & Reporting                        |    |  |
| 10.0 | Compliance & Review Procedures               | 37 |  |
|      | 10.1 Site Inspections & Environmental Audits | 37 |  |
|      | 10.2 Auditing                                | 37 |  |
|      | 10.3 Environmental Compliance                | 38 |  |
|      | 10.4 Corrective Actions                      | 38 |  |
|      |                                              |    |  |





#### 1.0 Introduction

Galetech Energy Services (GES), on behalf of White Hill Wind Limited, has prepared this Planning-Stage Construction & Environmental Management Plan (CEMP) for the construction of the White Hill Wind Farm Electricity Substation & Electricity Line.

#### 1.1 Purpose of this Report

This CEMP has been prepared to outline the management of activities during the construction of the project to ensure that all construction activities are undertaken in an environmentally responsible manner. This CEMP summarises the environmental commitments made in respect of the project and the measures to be adopted to ensure compliance with legislation and the requirements of statutory bodies.

This CEMP (Planning-Stage/Preliminary) is a live document and will be updated by the appointed contractor prior to the commencement of development. Prior to the commencement of construction, the updated CEMP will be reviewed by the Environmental Manager (EM) and Ecological Clerk of Works (ECoW), as necessary, to confirm the appropriateness of the measures set out therein. This CEMP will form part of the main construction works contract. The contractor will take account of the structure, content, methods and requirements contained within the various sections of this CEMP when further developing this document (to include environmental plans and other related construction management plans and method statements) as required.

#### 1.2 Objectives of this CEMP

This CEMP has been developed in accordance with the Institute of Environmental Management and Assessment (IEMA) *Practitioner Environmental Management Plans Best Practice Series Volume 12 (December 2008)* and has been designed to address the proposed environmental construction strategies that are to be implemented in advance of and during the construction of the project.

This CEMP aims to define good working practices as well as specific actions required to implement mitigation requirements as identified in the Environmental Impact Assessment Report (EIAR), Natura Impact Statement (NIS), the planning process, and/or other licensing or consenting processes.

#### 1.3 Structure of this CEMP

The CEMP has been structured such that it can be read as consolidated document or as discreet documents addressing specific environmental topics. In particular, we refer to the technical annexes enclosed which address specific matters such as spoil management, surface water management, waste management, and emergency responses.

A copy of the CEMP will be maintained in the site offices for the duration of the construction phase and will be available for review at any time. The contractor's EM will be responsible for the continued development of the CEMP throughout the construction phase.

Where specific construction management plans or method statements are prepared by the contractor, these will be inserted into the relevant section of this CEMP.



#### 1.4 Roles & Responsibilities

White Hill Wind Limited, and its appointed Project Manager, will be responsible for the overall implementation of the environmental measures and procedures set out in the CEMP. The role of the Project Manager relates to compliance monitoring with the CEMP and other planning/environmental/licensing requirements. Additionally, the Project Manager shall be empowered to halt works where he/she considers that continuation of the works would be likely to result in a substantial environmental risk.

The Project Manager will also carry out site checks that the works are being undertaken in accordance with the CEMP and will prepare a record of same.

The contractor will appoint an EM who will be responsible for coordination and development of the CEMP and any other surveys, reports or construction management plans necessary for the discharge of the requirements of the CEMP. The EM will also review the contractors construction management plans as required, carry out compliance auditing during the construction phase and coordinate the Environmental Management Group (see below) and required liaisons between White Hill Wind Limited, the contractor, and other statutory authorities.

Prior to commencement of construction, the contractor will identify a core Environmental Management Group, comprising of specific project personnel and including the Project Manager, EM and ECoW. The Environmental Management Group will meet monthly to discuss the monthly environmental report and will advise site personnel on areas where improvements may be made on site. The group will draw on technical expertise from relevant specialists where required and will liaise with other relevant external bodies as required.

#### 1.5 Reporting Procedures

Appropriate reporting procedures are key to the proper implementation of the measures outlined within this CEMP, and include reporting between parties involved in the construction of the project and also external stakeholders, such as the relevant local authorities.

Emergency and environmental incident reporting procedures are set out in the Environmental & Emergency Response Plan (see **Annex 1**).

#### 2.0 Description of the Project

White Hill Wind Limited intends to construct the project which will consist of:-

- A 110kV 'loop-in/loop-out' electricity substation;
- Approximately 320 metres (m) of 110kV underground electricity line between the electricity substation and the Kellis-Kilkenny overhead transmission line and the provision of 2 no. interface masts;
- An electrical control unit at the permitted White Hill Wind Farm site;
- Approximately 8.8km of underground electricity line between the electricity substation and the electrical control unit; and,
- All associated and ancillary site development, access, excavation, construction, landscaping and reinstatement works, including provision of site drainage infrastructure.

The project site traverses the administrative boundary between counties Kilkenny and Carlow; with the electricity substation and c. 3.3km of the underground electricity line located in County Kilkenny and c. 5.5km of the underground electricity line and the electrical control unit located in County Carlow. Electrical equipment suppliers,



construction material suppliers and candidate quarries which may supply aggregates are located nationwide.

Various environmental reports have been prepared in respect of the project and have been utilised in the preparation of this CEMP, including:-

- Environmental Impact Assessment Report (Galetech Energy Services); and
- Natura Impact Statement (SLR Consulting).

#### 3.0 General Construction Sequence

The construction phase is likely to last for approximately 15-18 months from commencement of further site investigations through the installation of underground electricity line, construction of the electricity substation and concluding with the commissioning of the electrical apparatus, site reinstatement and landscaping.

The construction phase of the development will comprise a 6 no. day week with normal working hours from 07:00 to 19:00 Monday to Friday and 07:00 to 13:00 on Saturdays or public holidays. It may, however, be necessary to undertake works outside of these normal hours in exceptional circumstances or in the event of any emergency. Where construction activities are necessary outside of the normal working hours, local residents and the Planning Authority will receive prior notification.

#### 3.1 Construction Method

The construction method will consist of the following general sequence:-

- Establishment of necessary traffic management measures at the substation site entrance, with site entrance to be fully established (including provision of visibility splays) in advance of other works commencing on site;
- Installation of preliminary surface water control measures;
- Carriageway widening works along the L66732;
- Progressive construction of the access track and installation of drainage system and surface water control measures;
- Establishment of temporary construction compound;
- Site preparatory works and groundworks associated with the substation compound including EirGrid Building and IPP Building;
- Establishment and continued management of spoil deposition areas;
- Construction of the EirGrid Building and IPP Building;
- Construction of bases or plinths for electrical apparatus;
- Erection of palisade fencing around substation compound;
- Installation of internal and external electrical apparatus in EirGrid Building and IPP Building and within compound;
- Installation of underground electricity line between electricity substation and electrical control unit including the advance installation of any surface water protection measures and the completion of HDD works;
- Installation of temporary wooden pole-sets to carry and maintain strain of the 110kV Kellis-Kilkenny electricity transmission line during installation of interface masts;
- Preparatory groundworks associated with the interface mast foundations;
- Installation of interface masts;
- Installation of underground electricity line between substation and interface masts;



- Establishment of necessary traffic management measures at the electrical control unit site entrance, with site entrance to be fully established (including provision of visibility splays) in advance of other works commencing on site;
- Site preparatory and groundworks associated with the control unit compound including installation of surface water control measures and construction of access track;
- Erection of palisade fencing around compound;
- Installation of electrical control unit;
- Commissioning and testing of electrical apparatus within electricity substation and electrical control unit;
- Connection of underground electricity line to the electricity substation and 110kV Kellis-Kilkenny electricity transmission line;
- Decommissioning of temporary wooden pole-sets;
- Connection of underground electricity line to the electrical control unit;
- Final commissioning of electrical apparatus and underground electricity line; and,
- Progressive site reinstatement, restoration, landscaping and planting proposals including the installation of stockproof fencing and the erection of gates.

In addition to the roles of the EM and ECoW described above, the construction phase will be supervised by a range of environmental and engineering specialist personnel; including a Project Supervisor for the Construction Stage (PSCS), Archaeological Clerk of Works (ACoW), and Geotechnical Clerk of Works (GCoW), among others; who will liaise closely with the appointed contractor's EM to monitor and to ensure that all applicable measures are implemented.

#### 3.2 Site Entrances

Access to the substation site will be provided via a new site entrance from the L66732 local public road. The site entrance will not be required to accommodate any abnormal size loads but has been designed to ensure ease of access and egress for standard HGVs which will deliver construction materials and electrical apparatus to the site.

The site entrance will be constructed in accordance with the requirements of the Planning Authority and appropriate visibility splays of 90m in each direction have been provided. Due to the requirement to provide visibility splays, it will be necessary to trim back roadside hedgerows; however, there will be no requirement for the removal of any hedgerow.

Following the completion of construction, the site entrance will be appropriately fenced off and gated to prevent unauthorised access. The reinstatement of the site entrance will also incorporate the replanting of hedgerows, with native species. Hedgerows will be appropriately sited to allow for future growth while ensuring, at all times, that visibility splays are maintained during the operational phase.

To the north of the site entrance, the width of the paved carriageway of the L66732 will be increased to accommodate the delivery of construction materials to the electricity substation. The existing carriageway will be widened by c. 1.5m over a distance of c. 130m. Along this section, existing roadside verge will be removed, and any roadside drainage features piped and backfilled, to accommodate the increased carriageway width. No hedgerow or trees will be removed; however, trimming of roadside vegetation will be undertaken.



The electrical control unit will be accessed via the creation of a new site entrance, from the L7117 local road. The site entrance will be constructed generally as described above with c. 10m of roadside hedgerow being removed and visibility splays of 90m in each direction being provided. The provision of visibility splays will not require the removal of any roadside hedgerow due to the width of the existing roadside verge; however, hedgerows may be trimmed back to ensure full visibility is maintained.

#### 3.3 Site Access Tracks

A total of approximately 1.35km of on-site access track (c. 1.1km at electricity substation and c. 250m at electrical control unit) will be required for construction purposes and for site access during the operational phase. The access track shall be similar to normal agricultural tracks but with a slightly wider typical running width of approximately 4m. The access track will largely be unsealed and constructed of crushed stone material to allow for permeability; however, c. 150m of access track within the electricity substation compound will be finished with concrete (in accordance with EirGrid specifications). Due to the findings of site investigations and the geological characteristics of the site, usable rock material for the construction of the access track is unlikely to be encountered during excavations and, therefore, it is likely that all aggregate material will be imported from local quarries.

The access tracks will generally be constructed as follows:-

- Topsoil and subsoil will be excavated, side-cast and stored in separate mounds in appropriate areas adjacent to the access track;
- Crushed stone will be laid on a geo-textile mat (where required) and compacted in layers to an appropriate depth. The access track will not be finished with tar and chips or concrete (other than a short section within the electricity substation compound which shall be finished with concrete) and the surface will be permeable to allow incidental rainfall to percolate to ground; thus avoiding significant volumes of surface water run-off being generated and avoiding changes to the natural drainage regime;
- Drainage infrastructure and the underground electricity line will be installed adjacent to the access track; and,
- The edges of the access track will be finished and reinstated with excavated material and reseeded or allowed to vegetate naturally.

#### 3.4 Temporary Construction Compound

Topsoil will be removed from the required area and side cast for temporary storage adjacent to the compound area. The compound base will be made up of well graded aggregates, compacted as necessary. A designated waste management area and fuels and chemicals storage area will be provided along with site offices, parking, staff welfare facilities and equipment storage areas. The compound will be fenced with temporary security fencing to restrict access. Following the completion of the construction phase, the temporary construction compound will be fully removed and the compound will be reinstated with excavated material and reseeded.

#### 3.5 Chemical Storage and Refuelling

Storage areas for chemicals and fuels will comprise bunded areas of sufficient capacity within the temporary construction compound. An oil interceptor will be installed within the surface water drainage system during the construction phase to intercept any accidental hydrocarbon spillages/discharges that may be present.



From the construction compound, fuel will be transported to the works area, by a 4x4, in a double skinned bowser with drip trays under a strict protocol and carried out by suitably trained personnel. The bowser/4x4 will be fully stocked with spill kits and absorbent material, with delivery personnel being fully trained to deal with any accidental spills. The bowser will be bunded appropriately for its carrying capacity. A 50m buffer will be observed around all natural surface water features and no refuelling will be permitted within this zone.

# 3.6 Electricity Substation

The footprint of the substation (overall compound area) will measure approximately 10,600m<sup>2</sup> and will be surrounded by a palisade fence, with associated gates, of 2.6m in height for safety and security reasons. The electricity substation will contain 2 no. control buildings and all necessary electrical equipment and apparatus to facilitate the export of electricity from the permitted White Hill Wind Farm to the national grid. Ancillary infrastructure located within the footprint of the compound will include transformers, busbars, insulators, circuit breakers, and lightning poles.

The substation site is relatively flat and slopes gently to the south/southeast with ground elevations ranging from c. 68m AOD in the southeast of the site to c. 73m AOD in the northwest (interface masts). There will be a requirement to undertake minor modifications to ground levels in order to achieve the required levels for the control buildings, structures and electrical equipment. A 'cut and fill' exercise will be excavated and imported material (i.e. aggregates) used to make up levels at areas of lower elevation. This process, which accords with best practice construction techniques, will avoid the excavation of significant volumes of soil or the importation of significant volumes of stone aggregates in order to provide a level compound.

The substation compound will be surfaced with c. 400mm of free-draining crushed stone such that rainwater can percolate to ground. Due to the findings of site investigations and the geological characteristics of the site, usable rock material for the construction of the access track is unlikely to be encountered during excavations and, therefore, it is likely that all aggregate material will be imported from local quarries

The loss of hedgerow will be off-set through the planting of hedgerows (native species) around the boundaries of the electricity substation and elsewhere within the project site.

The electricity substation will contain 2 no. control buildings; one of which, the Customer MV Switchgear Room ('the IPP Building'), will be operated and maintained by the Developer while the Transmission System Operator (TSO) Control Building ('the EirGrid Building') will be operated by EirGrid.

The IPP Building will measure c. 8.5m x 20m (gross floor area of 172m<sup>2</sup>) and will have an overall height of c. 5.5m to ridge height. The building shall be constructed of blockwork and will be finished in sand and cement render, slate roof covering and steel doors. The IPP Building will house switchgear and associated electrical equipment and apparatus.

The EirGrid Building will measure approximately 25m x 18m (gross floor area of 450m<sup>2</sup>) and will have an overall height of approximately 8.5m to ridge height. The building shall be constructed of blockwork and will be finished in sand and cement render, slate roof covering and steel doors. The control building will contain a control room to



allow operatives monitor and manage the operation of the electrical apparatus and will also include storage and welfare facilities.

During the project design process, the Developer engaged with the Shankill Group Water Scheme to determine the feasibility of obtaining a water supply for the EirGrid Building and the IPP Building. While water infrastructure is located adjacent to the electricity substation site, the Developer was advised that "Shankill GWS would not be in a position to grant a water connection to your proposed developement [sic] at this time." Subject to a grant of planning permission, the Developer will liaise with the Group Water Scheme prior to the commencement of development to re-assess the feasibility of obtaining a water connection. However, if a connection cannot be provided at that time, a well will be bored to provide water to the respective buildings.

Wastewater arising from the EirGrid and IPP buildings will be stored in a sealed subsurface foul holding-tank and will be removed from site as required by a local licensed waste collector. Waste water management proposals of this nature are common practice for developments of this type located in remote/rural areas with infrequent usage.

Electrical equipment; including, but not limited to, a transformer, busbars, switchgear, insulators, cable sealing ends, and lightning poles; will be located outside the control building (within the palisade fence).

# 3.7 Interface Masts & Underground Electricity Line

The interface masts will be lattice-type masts and will be located immediately beneath the Kellis-Kilkenny overhead electricity transmission line. The masts will have a maximum height of 16m and a permanent above-ground footprint of c. 100m<sup>2</sup> (total; c. 50m<sup>2</sup> per mast) with concrete foundations below ground to a depth of c. 2m. However, it should again be noted that the precise specifications of the interface masts may be immaterially altered to ensure compliance with any future revised EirGrid specifications.

At the location of the interface masts, the existing overhead transmission line will be broken and the 110kV underground electricity line (c. 320m) will connect the existing overhead line to the electricity substation.

## 3.8 Underground Electricity Line

The electricity substation will be connected to the electrical control unit at the permitted White Hill Wind Farm via an underground electricity line of c. 8.8km in length. The underground electricity line will comprise c. 5,925m (c. 5.9km) located within private agricultural lands/forestry and c. 2,850m (c. 2.9km) with the carriageways of the L6673, L6738, L7117 and L71172 local roads.

The electricity line will be installed within ducting in an excavated trench of c. 1.2m deep and c. 2.2m wide and pulled through the ducting in sections of c. 1,200m in length or depending on the length of cable required. Cable (electricity line) lengths will be connected at designated 'jointing plinths' to be installed along the route. It is estimated that 8 no. jointing plinths will be required along the route of the underground electricity line; however, the exact number to be constructed will be confirmed as part of the post-consent detailed design process. Jointing plinths will comprise a concrete slab of c. 2m<sup>2</sup> which will be installed within the trench to provide a firm foundation for the joining of the electricity line. Traditional joint bay chambers will not be required. Jointing plinths will, insofar as possible, be located within private lands to minimise the extent of infrastructure within the public road network.



Following the installation of the ducting and jointing plinths; ground levels will then be made up using appropriate material (including sand and excavated material, if appropriate, and finished/reinstated to the requirements of the Planning Authority (public road) or landowner (private lands).

All public roads along which it is proposed to install the underground electricity line will be subject to a full-carriageway reinstatement (re-surfacing) of the section where the electricity line is installed thus ensuring that there are no long-term effects on the public road network. Where the electricity line crosses a public road, a 20m section (i.e. 10m either side of the centre point of the trench) will be subject to a full carriageway reinstatement.

Within private lands, the trench will be backfilled, finished with topsoil and reseeded or allowed to naturally revegetate. Where the electricity line passes through a hedgerow, c. 4-5m of hedgerow will be removed to facilitate construction activities; however, all such hedgerow will be replaced/replanted on a like-for-like basis. The electricity line will also pass through a number of existing stonewalls and stone/earthen banks. Insofar as possible, the electricity line has been routed to avoid the requirement for the removal of stonewalls and will pass through existing access points in the stonewalls. In the event that a stonewall is disturbed during the construction of the electricity line, it shall be replaced and re-constructed to its original condition. Similarly, stone/earthen banks will be re-constructed to their original condition.

All trenching works will be undertaken to ensure that only short sections of trench are open at any one time. Excavated materials will be stored separately (topsoil, subsoil and aggregates [as encountered]) for use during the reinstatement of the trench or disposed of at an appropriate licensed facility as necessary. The sequence of works is typically as follows:-

- Identify existing underground services prior to excavation;
- Excavate the trench to the required dimensions;
- Place a blinding layer (sand) at the base of the trench;
- Place and joint the high-density polyethylene (HDPE) power ducts using ties at 3m intervals;
- Lay in and compact a layer of sand around and above ducts and place yellow warning tape above;
- Install HDPE communications cable ducts;
- Lay in and compact an additional layer of gravel/excavated material;
- Final backfill layer to include yellow warning tape; and,
- Appropriate reinstatement, as discussed above.

Horizontal Directional Drilling (HDD) will be undertaken at 5 no. locations along the underground electricity line; namely at the intersections of the electricity line and the Paulstown Stream, Moanmore Stream, Shankill Stream and the crossing of the unnamed stream along the access track leading to the electricity substation. The use of this methodology will avoid any in-stream works or any direct or indirect effect on the morphology of the stream. Launch and receptor pits will be excavated at either side of the streams; a minimum of 10m away from the streams; to accommodate the drilling rig. The bore will be at a minimum depth of 2.5m below the stream channels to ensure that there are no effects on the respective channels. Following the installation of the ducts, the launch and receptor pits will be fully reinstated. Marker posts will be placed at either side of the streams to indicate the location and alignment of the electricity line.

The electricity line crosses a Gas Network Ireland high pressure gas pipeline along the



L6673. Following consultation with Gas Network Ireland, it was confirmed to the Developer that a minimum separation between the gas line and the electricity line of 0.6m would be required. Due to the below-ground depths of the existing gas line (3.2m) and the proposed electricity line (1.1m to ducts), a separation of 2.1m is achievable and will be provided for.

The installation of the underground electricity line will be undertaken in strict accordance with the Code of Practice for Working in the Vicinity of the Transmission Network (Gas Networks Ireland, 2021) and particularly with respect to the use of handheld equipment within 1.5m (linear distance) of the pipeline.

# 3.9 Electrical Control Unit

The electrical control unit will measure approximately 10.5m x 4m (total gross floor area of 42m<sup>2</sup>) and will have an overall height of approximately 4.5m. The unit, which will be pre-fabricated, will be installed on concrete supports approximately 1.2m above the finished level of the compound (see below); and will be finished, externally, in an off-white or light grey colour and a black roof.

The control unit will be installed within an enclosed hardcore-surfaced compound which will measure approximately  $315m^2$  and will be surrounded by a palisade fence, with associated gates, of 2.6m in height for safety and security reasons. The compound site is relatively flat; however, there will be a requirement to undertake minor excavations to provide a level footing for the control unit. The compound will be surfaced with c. 400mm of free-draining crushed stone such that rainwater can percolate to ground.

The compound will be accessed via the creation of a new site entrance, from the L7117 local road, and the construction of c. 250m of access track. The site entrance will be constructed as described above; with c. 10m of roadside hedgerow being removed and visibility splays (90m in each direction) will be provided in accordance with Section 16.10.7 of the Carlow County Development Plan 2022-2028. The provision of visibility splays will not require the removal of any roadside hedgerow due to the width of the existing roadside verge; however, hedgerows may be trimmed back to ensure full visibility is maintained.

The construction of the access track will again be undertaken as described above and will necessitate the removal of c. 10m of existing hedgerow; however, this removal (and that required for the site entrance as described above) will be off-set through replanting elsewhere within the project site. The control unit will be largely screened from view; however, bolstering of an existing hedgerow immediately south of the compound will be undertaken to provide an increased level of screening from the L7117 local road.

## 3.10 Construction Waste Management

Waste will be generated during the construction phase and the main items of anticipated construction waste are as follows:-

- Hardcore, stone, gravel, concrete, plaster, topsoil, subsoil, timber, concrete blocks and miscellaneous building materials;
- Waste from chemical toilets;
- Plastics; and
- Oils and chemicals.

Waste disposal measures proposed include:-



- On-site segregation of all waste materials into appropriate categories including, for example, topsoil, subsoil, concrete, rock, tiles, oils/fuels, metals, electricity cable off-cuts, dry recyclables (e.g. cardboard, plastic, timber);
- All waste materials will be stored in skips or other suitable and sealed receptacles in a designated area of the construction compound;
- Wherever possible, left-over materials (e.g. timber off-cuts) and any suitable demolition materials shall be re-used on-site;
- Uncontaminated excavated material (topsoil, subsoil, etc.) will be re-used onsite in preference to importation of clean inert fill;
- If suitable rock is encountered, it will be utilised for landscaping and site reinstatement;
- All waste leaving the site will be transported by licensed contractors and taken to suitably licensed facilities and will be recycled or reused where possible; and,
- All waste leaving the site will be recorded in accordance with legal requirements and copies of relevant documentation maintained.

# 3.11 Construction Employment

It is estimated that up to 40 no. people will be employed during the approximately 15-18 month construction phase. The actual number will depend on the activities being undertaken at any given time and will vary throughout the course of the construction programme. Employment will be the responsibility of the construction contractor appointed by the Developer, but it is likely that the workforce will include labour from the local area.

# 3.12 Construction Traffic

Vehicular traffic required for the construction phase is likely to include:-

- Articulated trucks (HGVs) to bring initial plant and machinery to site and later to bring electrical equipment and other construction materials;
- Tipper trucks and excavation plant involved in site development and excavation works;
- Miscellaneous vehicles and handling equipment, including vehicles associated with construction workforce.

Effects from construction traffic could include temporarily increased local traffic levels and traffic noise; while disruption is likely to occur during the installation of the underground electricity cables. Construction traffic on the local road network and construction works along the electricity cable route will be managed in accordance with a Traffic Management Plan and the requirements of Kilkenny County Council and Carlow County Council.

Traffic management measures will be implemented during the construction phase, as follows:-

- Signage on approach roads and at the site entrances giving access information;
- Temporary traffic restrictions kept to minimum duration and extent;
- Diversions put in place to facilitate continued use of roads where restrictions have to be put in place (e.g. along the electricity line route). Local access for residents and landowners will be maintained at all times;
- Appropriate arrangements will be implemented for emergency services, school bus routes and other public transport services;
- One way systems will be implemented for construction traffic, where possible, to prevent construction vehicles meeting;



- Speed limits will be strictly enforced;
- A designated person will be appointed to manage access arrangements and act as a point of contact to the public; and,
- All reinstatement works to be carried out in full consultation with Kilkenny County Council and Carlow County Council.

## 4.0 Environmental Management Measures

#### 4.1 'Designed-In' Measures

The following measures will be implemented, as standard, as part of the construction of the project:-

- There will be a requirement to undertake minor modifications to ground levels in order to achieve the required levels for the control buildings, structures and electrical equipment. A 'cut and fill' exercise will be implemented whereby material at higher elevations (i.e. topsoil and subsoil) will be excavated and imported material (i.e. aggregates) used to make up levels at areas of lower elevation. This process, which accords with best practice construction techniques, will avoid the excavation of significant volumes of soil or the importation of significant volumes of stone aggregates in order to provide a level compound;
- The substation compound will be surfaced with c. 400mm free-draining crushed stone such that rainwater can percolate to ground thus avoiding significant generation of surface water;
- Wastewater arising from the control building will be stored in a sealed subsurface foul holding-tank and will be removed from site as required by a local licensed waste collector;
- The site entrance will be constructed, and visibility splays provided, in accordance with Section 13.22.1 of the *Kilkenny City & County Development Plan 2021-2027*. Having regard to the physical characteristics of the L66732-3 and the nature of the road being a cul-de-sac, it is assessed that the L66732-3 has a design speed of 60kph and, accordingly, visibility splays of 90m in each direction have been provided;
- Following the establishment of the entrance, it will be appropriately fenced off and gated to prevent unauthorised access. Access gates will be set back 18m from the road edge to allow HGVs pull off the public road before accessing the site which will prevent any disruption to local road users. The reinstatement of the site entrance will also incorporate the replanting of hedgerows, as appropriate;
- The access track at the electricity substation site will largely be unsealed and constructed of crushed stone material to allow for permeability; however, c. 150m of access track within the electricity substation compound will be finished with concrete (in accordance with EirGrid specifications);
- Some cut/fill in the construction of the access track will be necessary to ensure that horizontal and vertical alignments are suitable to accommodate HGV loads and drainage infrastructure. Where excess material arises from the construction of the access track, it will be utilised in the construction of trackside berms, if required, or permanently stored at the spoil deposition areas;
- The access track intersects with a private residential/agricultural laneway and, as a consequence, it will be necessary to create 2 no. additional access points. The access points will be constructed and finished in a similar manner to that described for the site entrance above. While the access points do not adjoin a public road and there is no requirement to provide visibility splays, it is proposed



to provide visibility splays of 30m in each direction to ensure the safety of all construction and operational phase traffic associated with the project and the users of the private laneway. Existing vegetation along the laneway will be trimmed back, as required, to ensure visibility is maintained at all times;

- The construction of the access point to the south of the laneway will involve the demolition of an existing agricultural shed/structure. The structure will be dismantled in its entirety with all materials removed from site and disposed of at an approved waste management facility;
- Temporary welfare units, including chemical toilets, to be provided at the temporary construction compound for construction staff will be sealed units to ensure that no discharges escape into the local environment. These will be supplied and maintained by a licensed supplier. Potable water (for drinking, food preparation, and hand washing etc.) will be supplied on-site by water dispensers and this will also be sourced and maintained by a licensed supplier;
- The construction compound will be marked out and fenced to prevent encroachment onto non-designated areas. Following the completion of all construction activities, the compound will be decommissioned with all structures removed and fully reinstated. Reinstatement will involve removing crushed stone and underlying geotextile, covering with topsoil and reseeding;
- The temporary construction compound has been located and designed such • that all cabins, storage containers, waste management facilities and bunded areas will be located a minimum distance of 50m from all watercourses/drainage ditches in order to minimise the risk of pollution and the discharge of deleterious matter. Stormwater which may arise from the roofs of cabins, containers or from sealed bunds will be passed through an oil interceptor prior to being discharged to the local environment;
- Given the linear nature of the electricity line route, it is likely that a number of small material storage areas will be utilised along the route during the construction phase to minimise the transportation of construction materials (e.g. ducting, electricity line, etc.). Such temporary compounds are likely to be located within agricultural farmyards or business premises along the route;
- Joint bases will, insofar as possible, be located within private lands to minimise the extent of infrastructure within the public road network;
- Following the installation of the ducting and joint bases; ground levels will then be made up using appropriate material (including sand and excavated material, if appropriate) and finished/reinstated to the requirements of the Planning Authority (public road) or landowner (private lands);
- All public roads along which it is proposed to install the underground electricity line will be subject to a full-carriageway reinstatement (re-surfacing) of the section where the electricity line is installed thus ensuring that there are no long-term effects on the public road network. Where the electricity line crosses a public road, a 20m section (i.e. 10m either side of the centre point of the trench) will be subject to a full-road reinstatement;
- All trenching works will be undertaken to ensure that only short sections of trench are open at any one time;
- Excavated materials will be stored separately (topsoil, subsoil and aggregates [as encountered]) for use during the reinstatement of the trench or disposed of at an appropriate licensed facility as necessary;
- Horizontal Directional Drilling (HDD) will be undertaken at 5 no. locations along the underground electricity line; namely at the intersections of the electricity line and the Paulstown Stream, Moanmore Stream, Shankill Stream and the crossing of the unnamed stream along the access track leading to the electricity



substation. The use of this methodology will avoid any in-stream works or any direct or indirect effect on the morphology of the stream. Launch and receptor pits will be excavated at either side of the streams; a minimum of 10m away from the streams; to accommodate the drilling rig. The bore will be at a minimum depth of 2.5m below the stream channels to ensure that there are no effects on the stream channels. Following the installation of the ducts, the launch and receptor pits will be fully reinstated. Marker posts will be placed at either side of the streams to indicate the location and alignment of the electricity line;

- All HDD works will be undertaken in strict accordance with best practice methodologies with surface water measures being installed; including implementation of exclusion zones within 10m of the stream channels, installation of double silt fencing, avoidance of any refuelling activities within 100m of the river, bunding of the Clear Bore™ batching, pumping and recycling plants, spill kits being available in the event of an accidental spillage or leakage, and the provision of adequately sized skips for the temporary storage of drilling arisings and drilling flush. All such arisings and flush will be disposed of to a licensed waste management facility;
- The installation of the underground electricity line in the environs of the highpressure gas pipeline will be undertaken in strict accordance with the Code of Practice for Working in the Vicinity of the Transmission Network (Gas Networks Ireland, 2021) and particularly with respect to the use of hand-held equipment within 1.5m (linear distance) of the pipeline;
- The electrical control unit compound will be surfaced with c. 400mm of freedraining crushed stone such that rainwater can percolate to ground;
- The compound will be accessed via the creation of a new site entrance, from the L7117 local road, and the construction of c. 250m of access track. The site entrance will be constructed as described above; with c. 10m of roadside hedgerow being removed and visibility splays (90m in each direction) will be provided in accordance with Section 16.10.7 of the Carlow County Development Plan 2022-2028. The provision of visibility splays will not require the removal of any roadside hedgerow due to the width of the existing roadside verge; however, hedgerows may be trimmed back to ensure full visibility is maintained;
- It is proposed that excavated material (topsoil, subsoil and peat [where present]) will, insofar as possible, be utilised in the post-construction reinstatement of the project (e.g. at the electricity substation site, interface mast foundations, access track and electricity line trench);
- Where excess material is generated at the electricity substation site or along the route of the underground electricity line which cannot be utilised for reinstatement or landscaping purposes, it is proposed to develop 2 no. dedicated spoil deposition areas immediately northeast of the electricity substation where excess material will be stored permanently;
- At the electricity substation site, a series of embedded best-practice drainage measures have been incorporated within the project design. Firstly, clean water drains will be installed upslope of the works area to intercept incidental surface water runoff and direct it away from the works area to prevent it becoming contaminated. Clean water drains will include check dams to control flow rates and avoid erosion or scouring of the drain; before water is discharged by a buffered outfall or level spreader at greenfield rates. Water will be discharged from the clean water drains over grassland to provide filtration and to ensure that no silt or sediment is discharged to the drainage network;



- All surface water runoff from works areas, excavations, stockpiles, or from dewatering activities at the electricity substation site will be intercepted by downslope dirty water drains. The dirty water drains will include check dams to limit flow rates to avoid any erosion or scouring of the drains. The drains will direct dirty water to stilling ponds (also known as silt/settlement/sediment ponds/traps)<sup>1</sup> where water will be stored for an appropriate period of time such that silt/sediment or suspended material falls to the floor of the pond. The treated (clean) water will then be discharged from the stilling pond to a lagoon-type settlement pond which will store the water for a further period of time to ensure that all entrained sediment is removed. Finally, the clean water will be discharged from the lagoon-type settlement ponds via a buffered outfall or level spreader, at greenfield rates, over grassland to provide a further layer of filtration and treatment;
- Surface water control measures will be implemented as construction progresses through the substation site; however, prior to the commencement of earthworks, temporary silt/sediment control infrastructure (e.g. straw bales) will be placed in any agricultural drains around the site until the full range of construction phase measures are installed;
- Along the route of the underground electricity line, temporary surface water control measures will be installed within roadside drainage features, agricultural drains and streams as construction progresses along the route. Such features may include silt fences, silt traps or straw bales which will ensure that silt/sediment or suspended material is not discharged to downstream waters;
- Due to the permeable nature of the substation compound, electrical control unit compound and access tracks, the vast majority of rainfall will percolate to ground during the operational phase. Accordingly, the majority of surface water drainage infrastructure installed during the construction phase (dirty-water drawings, stilling ponds and lagoon-type settlement ponds) will be decommissioned following the completion of construction;
- Stormwater drainage infrastructure will be installed around the EirGrid Building, IPP Building and electrical control unit to capture any runoff from roofed or paved areas; while permanent surface water drainage infrastructure will be installed at the perimeter of the electricity substation compound. All stormwater and surface water from the electricity substation compound will be directed to a permanent attenuation pond which will allow for the storage of water until such time as all suspended sediment is removed and the water can be safely discharged. Water will be discharged to an existing sheough at greenfield rates via a buffered outfall to prevent any erosion or scouring. Additionally, all stormwater and surface water from the substation compound will be passed through an oil/hydrocarbon interceptor to prevent the discharge of any hydrocarbons;
- Surface water discharge rates have been designed to mimic greenfield runoff rates thus avoiding any long term alteration to the hydrological or hydrogeological regime of the substation site;
- In order to assist in the assimilation of the electricity substation into the existing landscape fabric, a series of landscaping proposals have been incorporated into the design of the project and comprise the following:-
  - Bolstering of existing field boundaries;
  - Planting of new hedgerows and trees around the electricity substation;

<sup>&</sup>lt;sup>1</sup> Please note that the nomenclature of this surface water protection infrastructure may be used interchangeably within this EIAR and accompanying documentation.



- Planting of wild flower or wild grass mixes at infrastructure margins and residual areas of the substation site;
- Hedgerow and tree species to be planted will be native Irish species and will be selected to complement those current found within the local landscape
- Only fully licensed quarries which have been subject to EIA and have appropriate planning permission for the volumes of material to be extracted will be used;
- The construction phase will be supervised by a range of environmental and engineering specialist personnel; including a PSCS, ECoW, ACoW, and GCoW, among others; who will liaise closely with the EM to monitor and to ensure that all applicable measures are implemented; and,
- Waste will be generated during the operational phase including, for example, cooling oils, lubricating oils and packaging from spare parts or equipment. All waste will be removed from site and reused, recycled or disposed of in accordance with best-practice and all regulations at a licensed facility.

## 4.2 Population & Human Health

No measures, specific to population and human health, are necessary during the construction phase. Local residents and communities will be protected through the implementation of measures relevant to other topics including the protection of water quality, minimisation of dust emissions, minimisation of noise emissions, and appropriate traffic management procedures.

## 4.3 Biodiversity

#### 4.3.1 Nature Conservation Sites, Fisheries and Aquatic Ecology

Mitigation measures to prevent adverse effects on downstream European sites during construction are provided in full in the NIS. These will ensure no deterioration in the quality of water entering the River Barrow and River Nore cSAC; and will ensure there will be no effects on any QI habitats and species. The same is true for IEF non-QI aquatic habitats and species.

To mitigate likely effects during the construction phase, best practice construction methods will be implemented in order to prevent water (surface water and groundwater) pollution. Good practice measures will be applied in relation to pollution risk, sediment management and management of surface runoff rates and volumes.

While no significant effects are considered likely, as a precaution, specific measures to prevent any effects on freshwater pearl mussel are included, following the design of Altmüller and Dettmer (2006). These measures will also be beneficial for any other downstream aquatic habitat and species.

All personnel working on the project will be responsible for the environmental control of their work and will perform their duties in accordance with the requirements and procedures of the CEMP.

During the construction phase, all works associated with the construction of the project will be undertaken in accordance with the guidance contained within CIRIA Document C741 'Environmental Good Practice on Site' (CIRIA, 2015). Any groundwater encountered will be managed and treated in accordance with CIRIA C750, 'Groundwater control: design and practice' (CIRIA, 2016).



# 4.3.1.1 Habitats (Whitehall Quarries pNHA)

The project footprint predominately overlaps with lower-value terrestrial habitats and will be located almost entirely within existing roads and improved agricultural grassland. Some treelines and hedgerows (and mosaics of the same) will be removed. To avoid widespread disturbance to habitats, access within the project will be restricted to the footprint of the proposed works corridor and no access between different parts of the project will be permitted, except via the proposed works corridor. An Ecological Clerk of Works (ECoW) will be employed throughout the construction phase to ensure that construction activities do not encroach unnecessarily into any important habitats.

During dry weather (i.e. no rainfall), dust generated will be managed using dust suppression bowsers.

## 4.3.2 Invasive Plants

The following will be implemented to avoid the accidental spread of any invasive or non-native species:-

- An invasive species management plan will be developed and implemented. This will include the general prevention and containment measures and species-specific treatment measures below; and,
- An Ecological Clerk of Works will be employed for the duration of the construction period to make contractors aware of any invasive and non-native species sensitivities of the project and to undertake pre-construction surveys, enforcing any exclusion zones and mitigation measures as required.

## 4.3.2.1 General Prevention Measures

- Use of toolbox talks as part of site introduction to workers, including what to look out for and what procedures to follow if invasive species are observed;
- Signs will be used to warn workers of invasive species contamination;
- Only planting and sowing of native species if any reinstatement works are required or where invasive plant species are physically removed;
- Unwanted material contaminated with invasive species will be transported offsite by an appropriate licenced waste contractor and disposed of at a suitably licenced facility (NRA, 2010); and,
- Good hygiene practices will be adhered to including the removal of build-up of soil on equipment; keeping equipment clean; washing vehicles exiting the site using a pressure washer to prevent the transport of seeds; storing wastewater from washing facilities securely and treating to prevent spread of invasive species; checking footwear and clothing of workers for seeds, fruits or other viable material before leaving the site; any plant material arising from cleaning equipment, footwear and clothing will be carefully disposed of following (NRA, 2010) guidelines in such a manner not to cause the spread of invasive species.

## 4.3.2.2 General Containment Measures

 A pre-construction walkover survey of the project will be undertaken during the growing season (April to August). This will search for invasive and non-native species, which could change over time. The extent of invasive plant species will be physically marked out if there have been any changes since baseline surveys; and,



• If any are identified, then appropriate exclusion zone(s) will be implemented. A 1m buffer (except for the named species below) will be used to cordon off invasive species outside the works footprint.

# 4.3.2.3 Himalayan balsam

The following treatment options are recommended by TII (2020) guidance.

#### Chemical control

Chemical control of Himalayan balsam is possible and the use of glyphosate-based products can provide a very successful outcome. As the plant is an annual and the roots are extremely short, it is not necessary to hold off spraying until after flowering, as with deep rooted, rhizomatous and perennial species. Treatment in late May or early June will provide a good kill of treated plants but seeds from the previous season will germinate to replace the treated individuals and further spraying will be required in August or September. Since the seeds can remain dormant for more than one year, spraying, as in the first year will be required in the subsequent season. In Years 3 and 4, if no seeds have been deposited in the area, few plants should survive but monitoring and localised retreatment will be required.

If found near a watercourse crossing, bioactive-formulation glyphosate-based herbicide treatment is suitable.

#### Physical control

Mechanical control of Himalayan balsam is only likely to be effective where good access is available and the ground is smooth or level enough to permit either mowing or cutting. Where accessible, plants can be cut, mown or strimmed back to ground level before flowering in June. Do not cut earlier as this promotes greater seed production in plants that regrow. Unless the plant is cut to below the lowest node, it will re-sprout. Regular mowing will control the plant, provided the frequency of mowing is regular enough to prevent sprouting and flower formation. This should be repeated annually until complete control is achieved.

As the plants are very shallow-rooted, they can also be easily pulled from the ground by hand. Himalayan balsam has no spines, thorns or stinging cells and, hence, is not a danger to those doing the pulling, although it is always recommended to wear gloves as brambles and nettles commonly grow amongst the stands of Himalayan balsam plants. This control method, commonly referred to as 'balsam bashing', should be conducted in late April or early May when the plants are circa 1 m high. This puts less strain on the back of those pulling the plants. The pulled plants should be broken to discourage flowering, which can occur even with plants that have been removed from the ground. The broken plants can be placed in piles to rot naturally. Because seeds from the previous season will germinate and produce new plants following hand pulling in April or May, the exercise will need to be repeated later in the season, probably in August. As with herbicide spraying, hand pulling will be required the following year to account for the fact that seeds are capable of surviving for at least one year. Monitoring and localised hand pulling should be conducted for the following two years or as monitoring dictates.

Vegetative material can be disposed of by composting provided the compost will not be disturbed for a minimum of two years. Material may also be disposed of to a licensed landfill or incineration facility, or the material could be disposed of by shallow or deep burial.



# 4.3.2.4 Montbretia

The following treatment options are recommended by NRA (2010) guidance.

## Chemical control

Montbretia can be treated with herbicide during the active growing season. Due to the potential for re-infestation from seeds, corms and/or rhizome fragments, regular monitoring and follow-up treatment, as dictated by the monitoring, will be required over several years. If found near a watercourse crossing, similar bioactive-formulation glyphosate-based herbicide treatment is recommended as for Japanese knotweed (see above).

#### Physical control

Physical control of montbretia is difficult as individual corms easily break from their chains and can result in ready re-infestation or further spread. Where infestations are limited in extent, the entire stand can be excavated and buried or disposed of to a licensed landfill or incineration facility under licence. The most effective time to remove montbretia is before the flowering/seeding season. The corms are very hardy and are not suitable for composting. Due to the potential for re-infestation from corms, regular follow-up will be required over several years to deal with any re-growth.

#### 4.3.2.5 Salmonberry

In the event of interaction of works with salmonberry, excavation of the entire root system is recommended, in addition to the general prevent and containment measures outlined earlier.

This must be done before the plants' seeds ripen in autumn and plant matter from this process can be disposed of at a licenced landfill site or may be buried on-site up to a depth of >2 m.

## 4.3.2.6 Snowberry

As snowberry is present within hedgerows in third-party lands, the primary means of preventing spread will be avoidance.

In the event of interaction of works with snowberry, excavation of the entire root system is recommended, in addition to the general prevent and containment measures outlined earlier.

This must be done before the plants' seeds ripen in autumn and plant matter from this process can be disposed of at a licenced landfill site or may be buried on-site up to a depth of >2m.

#### 4.3.3 Birds

To avoid widespread disturbance to birds, access will be restricted to the footprint of the proposed works corridor.

Disturbance is predicted to have the greatest effect on breeding IEF passerines that use scrubby habitats.

The following will be implemented to reduce the possibility of damage and destruction (and disturbance to sensitive species) to occupied bird nests:-

• if site clearance and construction activities are required to take place during the main breeding bird season, pre-commencement survey work will be undertaken to ensure that nest destruction and disturbance is avoided;



- once vegetation has been removed from the works corridor, these areas will be retained in a condition that limits suitability for nesting birds for the remainder of the construction phase e.g. cover for ground nesting species will be made unsuitable for cutting vegetation or tracking over with an excavator; and,
- a suitably experienced Ecological Clerk of Works will be employed for the duration of the construction period to make contractors aware of the ornithological sensitivities of the project and to undertake surveys for nesting birds throughout the construction period, and enforcing exclusion areas, as required.

# 4.3.4 Terrestrial Mammals (excluding bats)

Measures proposed above will prevent deterioration of water quality and adverse effects on mammals relying on downstream habitats, such as otter. Habitat features important for mammals will be retained a (e.g. hedgerows and treelines).

A pre-construction walkover survey of the project will be undertaken. This will search for mammal resting/breeding places which could change over time. If any are identified, then appropriate exclusion zone(s) will be implemented and construction activities timed to avoid sensitive periods, such as the breeding season or hibernation, as relevant.

The following will be implemented to reduce the possibility of direct and indirect effects on mammals:-

- limiting constructions works to daylight hours;
- providing exit points for any excavations (e.g. escape planks or spoil runs) so mammals do not become trapped; and,
- if any threatened or legally protected mammals are recorded during the preconstruction walkover survey, the Ecological Clerk of Works make contractors aware of the mammalian sensitivities of the project and to undertake surveys for breeding or resting mammals throughout the construction period, enforcing exclusion areas as required. These are 50m for red squirrel, 100m for pine marten, 150m for otter and 50m for badger. If in the unlikely event that exclusion zones cannot be implemented, advice will be sought from NPWS, and appropriate mitigation and compensation measures will be put in place and an application will be made to NPWS for a derogation licence if required.

## 4.3.5 Bats

While some hedgerows and treelines will be lost due to construction, the majority of these will be replaced in situ, so there will be no net loss of commuting and foraging routes for bats.

The only structure located within the project footprint is the corrugated roofed component of structure PRF9, which has negligible bat roosting potential. Therefore, it will not be necessary for an ecologist to undertake a comprehensive survey of any structures in advance of construction works. Similarly, there are no PRF-I trees within or nearby the project footprint, and so no further surveys for bats are required.

A precautionary working method statement (PWMS) will be prepared prior to felling any trees to ensure work methods and timings avoid any effects on bats. This will detail how tree felling will be carried out to avoid any effects to bats.



Soft-felling will be carried out in suitable weather conditions and at appropriate times of year (other than winter when they are hibernating). Briefly, this involves the following:-

- removal of the tree in sections, starting with the top branches and working down the trunk avoiding cutting through cavities;
- lowering of any sections with potential roost features with care, positioning them
  on the ground with potential entrances to roosts facing upwards to allow bats to
  exit the roost; and
- leaving these sections in place for at least 24-hours in suitable weather.

During early-morning and evening working hours, the electricity substation and temporary construction compound and electrical control unit compound will be illuminated to enable construction activities. To avoid any effects on bats, cowled lighting will be used, directing light inwards, and away from hedgerows, to minimise disturbance of any commuting or foraging bats.

Appropriate luminaire specifications will also be used for lighting at the substation as outlined in BCT (2023). These include:-

- All luminaires should lack UV elements when manufactured. Metal halide, compact fluorescent sources should not be used;
- LED luminaires should be used where possible due to their sharp cut-off, lower intensity, good colour rendition and dimming capability;
- A warm white light source (2700Kelvin or lower) should be adopted to reduce blue light component;
- Light sources should feature peak wavelengths higher than 550nm to avoid the component of light most disturbing to bats (Stone, 2012);
- Column heights should be carefully considered to minimise light spill and glare visibility. This should be balanced with the potential for increased numbers of columns and upward light reflectance as with bollards;
- Only luminaires with a negligible or zero Upward Light Ratio, and with good optical control, should be considered; and,
- Luminaires should always be mounted horizontally, with no light output above 90° and/or no upward tilt.

# 4.3.6 Other Protected Flora

Pre-construction checks will be undertaken for spawning frogs in drainage ditches adjacent to the underground electricity line if construction works are undertaken in February. If found, adults and spawn will be translocated under NPWS licence to suitable alternative locations if present. Pitfall traps and drift fences will be used to capture adult frogs.

Amphibian-proof fencing close to any ponds/pools will be used to prevent frogs or smooth newts from accessing any parts of the project most hazardous to amphibians during the construction phase.

# 4.4 Land & Soil

# 4.4.1 Soil, Subsoil and Bedrock Excavation

Mitigation measures at the electricity substation site and electrical control unit site include:-

• Placement of infrastructure in areas of suitable ground conditions based on detailed site investigation data;



- The soil and subsoil which will be removed during the construction phase will be localised to the proposed infrastructure location;
- The project has been designed to avoid sensitive habitats;
- No unnecessary excavation of soil or subsoil will be undertaken;
- At the identified spoil deposition areas, the vegetative topsoil layer will be removed to allow for spoil to be placed and, upon reaching the recommended height, the vegetative topsoil layer will be reinstated over the spoil. Alternatively, the deposition areas may be covered with topsoil and allowed to vegetate.;
- The spoil deposition areas will be developed in a phased approach, with the topsoil removed and temporarily stockpiled within the defined area while the spoil is being placed. The stockpiled topsoil will then be reinstated over the placed spoil, and the exercise will continue within the same spoil deposition area until the area is full;
- The placement of spoil will be restricted to a maximum height of 3.5m, subject to confirmation by the Geotechnical Engineer;
- Where practical, the surface of the placed spoil is shaped to allow efficient runoff of surface water. Where possible, shaping of the surface of the spoil will be carried out as placement of spoil within the area progresses. This will reduce the likelihood of debris run-off and ensure stability of the placed spoil;
- Finished/shaped side slopes of the placed spoil will be not greater than 1(v):2(h) in the deposition areas and not greater than 1(v):1(h) alongside access tracks;
- Inspections of the spoil deposition areas will be made by a Geotechnical Engineer on a weekly basis during the construction phase and monthly for a 6month period thereafter. The appointed contractor will review work practices at the spoil deposition areas when periods of heavy rainfall are expected so as to prevent excessive dirty water runoff from being generated;
- An interceptor drain will be installed upslope of the spoil deposition areas to divert any surface water away from these areas;
- The surface of the deposited spoil will be profiled to a gradient to be agreed with the Geotechnical Engineer;
- All the above-mentioned general guidelines and requirements will be confirmed by the Geotechnical Engineer prior to construction; and,
- Spoil deposition areas are at a minimal distance from excavation areas to avoid excessive transport of excavated materials.

Mitigation measures along the underground electricity line include:-

- Soils and subsoils excavated along the underground electricity line will be temporarily stored in covered stock piles along the edge of the trench or immediately removed from site to a licensed waste management facility, as appropriate; and,
- The tarmacadam road surface will be replaced with the same design standard as the surrounding carriageway.

## 4.4.2 Erosion of Exposed Soil and Subsoil

The following mitigation measures are proposed to prevent the erosion of soil and subsoil:-

- Excavated soil will be side cast and stored temporarily adjacent to excavation areas for use during reinstatement and landscaping;
- Silt fences will be installed around all temporary stockpiles and excavated areas to limit movement of entrained sediment in surface water runoff;



- In order to minimise runoff during the construction phase, works will not take place during periods of intense or prolonged rainfall (to prevent increased silt laden runoff). Drainage systems will be implemented to limit runoff effects during the construction phase;
- Bog mats will be used, as necessary, to support construction plant and machinery on soft ground, thus reducing the likelihood for soil and subsoil erosion and avoiding the formation of rutted areas. This will substantially reduce the likelihood for surface water ponding to occur;
- Following the completion of construction, the spoil deposition areas will be covered with the vegetative topsoil layer removed from the footprint of the deposition areas or covered with topsoil and allowed to vegetate;
- The underground electricity line will be constructed in a stepwise manner along its length. This will minimise the time any particular section of the underground electricity line trench is open before being reinstated;
- A detailed Spoil Management Plan will be prepared as part of the Construction & Environmental Management Plan prior to the commencement of development; and,
- Works at the spoil deposition areas will be monitored, on a weekly basis during the construction phase and monthly for a six month period thereafter, by an appropriately qualified Geotechnical Engineer.

# 4.4.3 Contamination of Soil by Leakages and Spillages and Alteration of Soil/Subsoil Geochemistry

The following measures are proposed to specifically prevent contamination of soils and subsoils:-

- The volume of fuels or oils stored on site will be minimised;
- All fuel and oil will be stored in an appropriately bunded area of sufficient capacity within the temporary construction compound. Only an appropriate volume of fuel will be stored at any given time. The bunded area will be roofed to avoid the ingress of rainfall and will be fitted with a storm drainage system and an appropriate oil interceptor;
- All bunded areas will have 110% capacity of the volume to be stored;
- An oil interceptor will be installed within the surface water drainage system at the electricity substation site during the construction phase to intercept any accidental hydrocarbon spillages;
- From the construction compound, fuel will be transported to the works area by a 4x4, in a double skinned fuel bowser. The fuel bowser, a double-axel custom-built refuelling trailer will be re-filled at the temporary compound and will be towed around the site by a 4x4 jeep to where plant and machinery is located. The bowser/4x4 jeep will also be fully stocked with fuel absorbent material, pads and spill kits in the event of any accidental spillages. The fuel bowser will be parked on a level area in the construction compound when not in use and only designated trained and competent operatives will be authorised to refuel plant on site. Mobile measures such as drip trays and fuel absorbent mats will be used during all refuelling operations to avoid any accidental leakages;
- All plant and machinery used during construction will be regularly inspected for leaks and fitness for purpose;
- Spill kits will be available to deal with any accidental spillages within the temporary construction compound and during refuelling;
- All waste tar material arising from road cuttings (from trenching in public roads) will be removed off-site and disposed of at a licensed waste facility. Due to the



potential for contamination of soils and subsoils, it is not proposed to utilise this material for any reinstatement works; and,

• An emergency plan for the construction phase to deal with accidental spillages is enclosed at **Annex 1**. This emergency plan will be further developed by the contractor prior to the commencement of construction.

# 4.5 Water

The overarching objective of the proposed mitigation measures is to ensure that all surface water runoff is comprehensively attenuated such that no silt or sediment laden waters or deleterious material is discharged into the local drainage system. A Surface Water Management Plan (SWMP), incorporating the surface water drainage design has been prepared for the electricity substation and electrical control unit and incorporates the principles of Sustainable Drainage Systems (SuDS) through an arrangement of surface water drainage infrastructure.

While the SuDS, overall, is an amalgamation of a suite of drainage infrastructure; the overall philosophy is straightforward. In summary:-

- Clean water drains will be installed upslope of the works area to intercept clean surface water to prevent it becoming contaminated by silt/sediment from construction activities;
- All surface water runoff from construction areas will be directed to specially constructed downslope dirty water drains surrounding all areas of ground proposed to be disturbed (including areas for the temporary storage of material);
- The swales will direct runoff into stilling ponds and, subsequently, lagoon-type settlement ponds<sup>2</sup> where silt/sediment will be allowed to settle; and,
- Following the settlement of silt/sediment, clean water will be discharged to the local drainage network or to ground via buffered outfalls or level spreaders thus ensuring that no scouring occurs.

The suite of surface water drainage infrastructure will include *inter alia* upslope clean water drains, downslope dirty water drains, sedimats, flow attenuation and filtration check dams, stilling ponds, lagoon-type settlement ponds and buffered outfalls or level spreaders.

The design criteria implemented as part of the SuDS are as follows:-

- To minimise alterations to the ambient site hydrology and hydrogeology;
- To provide settlement and treatment controls as close to the site footprint as possible and to replicate, where possible, the existing hydrological environment of the site;
- To minimise sediment loads resulting from the development run-off during the construction phase;
- To preserve greenfield runoff rates and volumes;
- To strictly control all surface water runoff such that no silt or other pollutants shall enter watercourses and that no artificially elevated levels of downstream siltation or no plumes of silt arise when substratum is disturbed;
- To provide settlement ponds to encourage sedimentation and storm water runoff settlement;

<sup>&</sup>lt;sup>2</sup> The design of the lagoon-type sediment ponds shall generally accord with the principles Altmüller R. & Dettmer, R. (2006) Successful species protection measures for the Freshwater Pearl Mussel (Margaritifera margaritifera) through the reduction of unnaturally high loading of silt and sand in running waters – Experiences within the scope of the Lutterproject.



• To reduce stormwater runoff velocities throughout the site to prevent scouring and encourage settlement of sediment locally; and,

To manage erosion and allow for the effective revegetation of bare surfaces.

4.5.1 Earthworks (Removal of Vegetation Cover, Excavations, Trenching and Stock Piling) Resulting in Suspended Solids Entrainment in Surface Water)

# 4.5.1.1 Electricity Substation and Electrical Control Unit

The management of surface water runoff and subsequent treatment prior to release off-site will be undertaken during construction work as follows:-

- Prior to the commencement of earthworks, silt fencing will be placed downgradient of the construction areas, as required, until the full range of construction phase measures are installed;
- These will be embedded into the local soils to ensure all site water is captured and filtered;
- Clean water drains will include check dams to control flow rates and avoid erosion or scouring of the drain;
- Water from the clean drains will be discharged by a buffered outfall or level spreader at greenfield runoff rates;
- Water will be discharged from the clean drains over natural grassland or to existing agricultural drains which will provide further filtration;
- All surface water runoff from works areas, excavations, stockpiles at the electricity substation site and electrical control unit site will be intercepted by downslope drains which will also include check dams;
- These dirty water drains will direct water to stilling ponds where water for treatment and attenuation;
- From the stilling ponds, water will be discharged to lagoon-type settlement ponds for final treatment. The settlement ponds will follow a design outlined by Altmuller and Dettmer (2006);
- The treated water will then be discharged via a buffered outfall or level spreader, at greenfield rates, over natural grassland which will provide additional filtration and treatment;
- The precise design, sizing and sitting of the drainage infrastructure will be confirmed as part of the post-consent detailed design process, however the design will be reflective of predicted rainfall levels with an appropriate allowance for climate change
- Daily monitoring of the excavation/earthworks, the water treatment and pumping system and the discharge areas will be completed by a suitably qualified person during the construction phase. All necessary preventative measures will be implemented to ensure no entrained sediment, or deleterious matter will enter the main drainage channel;
- If high levels of silt or other contamination is noted in the pumped water or the treatment systems, all construction works will be stopped. No works will recommence until the issue is resolved and the cause of the elevated source is remedied; and,
- Earthworks will take place during periods of low rainfall to reduce run-off and potential siltation of watercourses.

The construction of the site drainage system will be carried out, at the respective locations, prior to other activities being commenced. The construction of the drainage system will only be carried out during periods of, where possible, no rainfall,



therefore avoiding runoff. This will avoid the risk of entrainment of suspended sediment in surface water runoff, and transport via this pathway to surface watercourses. Construction of the drainage system during this period will also ensure that attenuation features associated with the drainage system will be in place and functional for all subsequent construction works.

# 4.5.1.2 Electricity Line

The majority of the underground electricity line is in excess of 50m from any nearby watercourse with the exception of the 5 no. watercourse crossings.

No in-stream works are required at the crossing locations as HDD is proposed, however due to the proximity of the watercourses to the construction works, there is a risk of surface water quality effects during trench excavation work.

Mitigation measures which are outlined below will be implemented to ensure that silt laden or contaminated surface water runoff from the trenching work does not discharge directly to the water:-

- All existing dry drains that intercept the works area will be temporarily blocked down-gradient of the works using temporary check dams/silt traps (e.g. straw bales);
- Clean water diversion drains will be installed upgradient of the works areas, as required;
- Check dams/silt fence arrangements (silt traps or straw bales) will be placed in all existing drains that have surface water flows and also along existing roadside drains; and,
- A double silt fence perimeter will be placed down-slope of works areas that are located inside the watercourse 50m buffer zones such as at watercourse crossing locations.

## 4.5.1.3 Pre-emptive Site Drainage Management

The works programme for the construction stage of the project will also take account of weather forecasts, and predicted rainfall in particular. Large excavations and movements of soil/subsoil or vegetation stripping will be suspended or scaled back if prolonged or intense rain is forecast. The extent to which works will be scaled back or suspended will relate directly to the amount of rainfall forecast.

The following forecasting systems are available and will be used on a daily basis at the site to direct proposed construction activities:-

- General Forecasts: Available on a national, regional and county level from the Met Eireann website (www.met.ie/forecasts). These provide general information on weather patterns including rainfall, wind speed and direction but do not provide any quantitative rainfall estimates;
- Meteo Alarm: Alerts to the possible occurrence of severe weather for the next 2days. Less useful than general forecasts as only available on a provincial scale;
- 3-hour Rainfall Maps: Forecast quantitative rainfall amounts for the next 3-hours but does not account for possible heavy localised events;
- Rainfall Radar Images: Images covering the entire country are freely available from the Met Eireann website (www.met.ie/latest/rainfall\_radar.asp). The images are a composite of radar data from Shannon and Dublin airports and give a picture of current rainfall extent and intensity. Images show a quantitative measure of recent rainfall. A 3-hour record is given and is updated every 15minutes. Radar images are not predictive; and,



• Consultancy Service: Met Eireann provide a 24-hour telephone consultancy service. The forecaster will provide interpretation of weather data and give the best available forecast for the area of interest.

The use of safe threshold rainfall values will allow work to be safely controlled (from a water quality perspective) in the event of an impending high rainfall intensity event.

Works will be suspended if forecasting suggests either of the following is likely to occur:-

- >10 mm/hr (i.e. high intensity local rainfall events);
- >25 mm in a 24-hour period (heavy frontal rainfall lasting most of the day); or,
- >half monthly average rainfall in any 7 days.

Prior to works being suspended, the following control measures should be completed:-

- Secure all open excavations;
- Provide temporary or emergency drainage to prevent back-up of surface runoff; and,
- Avoid working during heavy rainfall and for up to 24-hours after heavy events to ensure drainage systems are not overloaded.

# 4.5.2 Excavation Dewatering and Effects on Surface Water Quality

The management of excavation dewatering (pumping), particularly in relation to any accumulation of water in foundations or electricity line trenches, and subsequent treatment prior to discharge into the drainage network will be undertaken as follows:-

- Appropriate interceptor drainage, to prevent upslope surface runoff from entering excavations, will be installed as relevant;
- The interceptor drainage will not be discharged directly to surface waters to ensure that Greenfield runoff rates are mimicked;
- If required, pumping of excavation inflows will prevent build up of water in the excavation;
- All pumped water will be directed to the surface water drainage system for treatment prior to discharge. In the case of the electricity line, any pumped waters will be discharged over grassland to allow for filtration;
- There will be no direct discharge to local drains, and therefore no risk of hydraulic loading or contamination will occur;
- Daily monitoring of site excavations by the EM will occur during the construction phase. If high levels of seepage inflow occur, excavation work at this location will cease immediately and a geotechnical assessment undertaken; and,
- A mobile 'Siltbuster' or similar equivalent specialist treatment system will be available on-site for emergencies. Siltbusters are mobile silt traps that can remove fine particles from water using a proven technology and hydraulic design in a rugged unit. The mobile units are specifically designed for use on construction-sites and will be used as final line of defence, if required.

# 4.5.3 Release of Hydrocarbons during Construction and Storage

Mitigation measures proposed to avoid release of hydrocarbons at the site are as follows:-

 The volume of fuels or oils stored on site will be minimised. All fuel and oil will be stored in an appropriately bunded area within the temporary construction compounds. Only an appropriate volume of fuel will be stored at any given time. The bunded area will be roofed to avoid the ingress of rainfall and will be fitted with a storm drainage system and an appropriate oil interceptor;



- All bunded areas will have 110% capacity of the volume to be stored;
- On site re-fuelling of machinery will be carried out using a mobile double skinned fuel bowser. The fuel bowser, a double-axel custom-built refuelling trailer, will be re-filled at the temporary compound and will be towed around the site by a 4x4 jeep to where plant and machinery is located. The 4x4 jeep will also be fully stocked with fuel absorbent material and pads in the event of any accidental spillages. The fuel bowser will be parked on a level area in the construction compound when not in use and only designated trained and competent operatives will be authorised to refuel plant on site. Mobile measures such as drip trays and fuel absorbent mats will be used during all refuelling operations to avoid any accidental leakages;
- All plant and machinery used during construction will be regularly inspected for leaks and fitness for purpose;
- Spill kits will be readily available to deal with and accidental spillage;
- All waste tar material arising from road cuttings (from trenching or other works in public roads) will be removed off-site and taken to a licensed waste facility. Due to the possibility of contamination of soils and subsoils, it is not proposed to utilise this material for any reinstatement works or for storage within the spoil deposition areas; and
- An outline emergency plan for the construction phase to deal with accidental spillages is contained within the Planning-Stage CEMP. This emergency plan will be further developed prior to the commencement of development, and will be agreed with the Planning Authority as part of the detailed CEMP.

# 4.5.4 Groundwater and Surface Water Contamination from Wastewater Disposal

Measures to avoid contamination of ground and surface waters by wastewaters will comprise:-

- Self contained port-a-loos (chemical toilets) with an integrated waste holding tank will be installed at the temporary construction compound, maintained by the providing contractor, and removed from site on completion of the construction works;
- Water supply for the site office and other sanitation will be brought to site and removed after use to be discharged at a suitable off-site treatment location; and,
- No water will be sourced on the site during construction, nor will any wastewater be discharged to the site.

# 4.5.5 Release of Cement-Based Products

The following mitigation measures are proposed to ensure that the release of cementbased products is avoided:-

- No batching of wet-cement products will occur on site. Ready-mixed concrete will be brought to site as required and, where possible, emplacement of pre-cast products, will take utilised;
- Where concrete is delivered on site, only the chute will be cleaned, using the smallest volume of water practicable. Chute cleaning will be undertaken at lined cement washout ponds within the temporary construction compound with waters being tankered off site and disposed of at an approved licensed facility. There will be no discharge of cement contaminated waters to the construction drainage system or to any drain;



- Weather forecasting will be used to ensure that prolonged or intense rainfall is not predicted during concrete pouring activities; and,
- The pour site will be kept free of standing water and plastic covers will be ready in case of sudden rainfall event.

# 4.5.6 Morphological Changes to Surface Watercourses & Drainage Patterns

Temporary silt fencing/silt trap arrangements (e.g. straw bales) will be placed within existing roadside/field drainage features along the electricity line route to remove any suspended sediments from the works area.

The trapped sediment will be removed and disposed of at an appropriate licenced facility. Any bare-ground will be re-seeded/reinstated immediately and silt fencing temporally left in place if necessary.

The following mitigation measures are proposed in respect of the installation of the culvert over the unnamed stream to the north of the electricity substation:-

- The stream crossing will be a clear span bridge (bottomless culvert) and the stream bed will remain undisturbed. No in-stream excavation works are proposed or anticipated as being required and therefore there will be no effect on the stream;
- At the time of construction, all guidance/best practice requirements of the Office of Public Works (OPW) or Inland Fisheries Ireland will be incorporated into the design/construction of the proposed watercourse/culvert crossings;
- As a further precaution, in-stream construction work (if required) will only be carried out during the period permitted by Inland Fisheries Ireland for in-stream works according to Guidelines on Protection of Fisheries During Construction Works in and Adjacent to Waters (2016) (i.e., July to September inclusive). This time period coincides with the period of lowest expected rainfall, and therefore minimum runoff rates. This will minimise the risk of entrainment of suspended sediment in surface water runoff, and transport via this pathway to surface watercourses (any deviation from this will be done in discussion with the IFI); and,
- The installation of the culvert will require a Section 50 license application to the OPW in accordance with the Arterial Drainage Act 1945. The stream crossing will be designed in accordance with OPW guidelines/requirements on applying for a Section 50 consent.

## 4.5.6.1 Directional Drilling

- Although no in-stream works are proposed, the drilling works will only be done over a dry period between July and September (as required by IFI for in-stream works) to avoid the salmon spawning season and to have more favourable (dryer) ground conditions;
- The crossing works areas will be clearly marked out with fencing or flagging tape to avoid unnecessary disturbance;
- There will be no storage of material/equipment or overnight parking of machinery inside a 10m buffer zone which will be imposed around the watercourses;
- Before any ground works are undertaken, double silt fencing will be placed upslope of the watercourse channel along the 10m buffer zone boundary;
- Additional silt fencing or straw bales (pinned down firmly with stakes) will be placed across any natural surface depressions/channels that slope towards the watercourse;



- Silt fencing will be embedded into the local soils to ensure all site water is captured and filtered;
- The area around the bentonite batching, pumping and recycling plant will be bunded using terram (as it will clog) and sandbags in order to contain any spillages;
- Drilling fluid returns will be contained within a sealed tank/sump to prevent migration from the works area;
- Spills of drilling fluid will be clean up immediately and stored in an adequately sized skip before been taken off-site;
- If rainfall events occur during the works, there will be a requirement to collect and treat small volumes of surface water from areas of disturbed ground (i.e. soil and subsoil exposures created during site preparation works);
- This will be completed using a shallow swale and sump down slope of the disturbed ground; and water will be pumped to a proposed percolation area at least 50m from the watercourses;
- The discharge of water onto vegetated ground at the percolation area will be via a silt bag which will filter any remaining sediment from the pumped water. The entire percolation area will be enclosed by a perimeter of double silt fencing;
- Any sediment laden water from the works area will not be discharged directly to a watercourse or drain;
- Works shall not take place during periods of heavy rainfall and will be scaled back or suspended if heavy rain is forecasted;
- Daily monitoring of the works area, the water treatment and pumping system and the percolation area will be completed by a suitably qualified person during the construction phase. All necessary preventative measures will be implemented to ensure no entrained sediment, or deleterious matter is discharged to the watercourse;
- If high levels of silt or other contamination is noted in the pumped water or the treatment systems, all construction works will be stopped. No works will recommence until the issue is resolved and the cause of the elevated source is remedied;
- On completion of the works, the ground surface disturbed during the site preparation works and at the entry and exit pits will be carefully reinstated;
- The silt fencing upslope of the river will be left in place and maintained until the works area has been fully reinstated;
- There will be no batching or storage of cement allowed at the watercourse crossing;
- There will be no refuelling allowed within 100m of the watercourse crossing; and,
- All plant will be checked for purpose of use prior to mobilisation at the watercourse crossing.

A Fracture Blow-out (Frac-out) Prevention and Contingency Plan will be prepared by the drilling contractor prior to construction and will include the following measures:-

- The drilling fluid/bentonite will be non-toxic and naturally biodegradable (i.e., Clear Bore Drilling Fluid or similar will be used);
- The area around the drilling fluid batching, pumping and recycling plants will be bunded using terram and/or sandbags to contain any potential spillage;
- A double row of silt fencing will be placed between the works area and the adjacent river;
- Spills of drilling fluid will be cleaned up immediately and transported off-site for disposal at a licensed facility;



- Adequately sized skips will be used where temporary storage of arisings are required;
- The drilling process/pressure will be constantly monitored to detect any possible leaks or breakouts into the surrounding geology or local watercourse;
- This will be gauged by observation and by monitoring the pumping rates and pressures. If any signs of breakout occur then drilling will be immediately stopped;
- Any frac-out material will be contained and removed off-site;
- The drilling location will be reviewed, before re-commencing with a higher viscosity drilling fluid mix; and,
- If the risk of further frac-out is high, a new drilling alignment will be sought at the crossing location.

# 4.5.7 Effects on the Castlewarren GWS, Shankill GWS and Paulstown PWS Water Supplies and Bagenalstown Abstraction

Due to the significant setback distance from the Monefelim River inner protection zone to the electrical control unit (c. 0.6km), the limited construction works to be undertaken within the catchment (i.e. electrical control unit and electricity line), the lack of direct surface water pathways (i.e. drains/streams) between the project site and the Monefelim River in addition to the comprehensive array of drainage control measures and pollution prevention measures (discussed above), it is assessed that the project will have no effects on the Paulstown Public Water Supply.

It should also be highlighted that the proportion of water coming from the Monefelim River catchment which supplies the Paulstown PWS spring is reported by the GSI to be less important than the portion coming from the Acore catchment (in which there are no elements of the project).

The fact that the electricity line route within the Monefelim River catchment is limited to only 3.5km, will be installed at a shallow depth and that no instream works are required at the 1 no. watercourse crossing (Paulstown Stream), means that no effects on the Paulstown Public Water Supply will occur.

As an additional pollution prevention measure, no fuel storage will be permitted along the electricity line located within the Monefelim River catchment.

In addition, approximately 1.3km of the electricity line route is located inside the Castlewarren GWS source groundwater protection area. Due to the shallow nature of the works and poorly productive aquifers with short groundwater flowpaths, there is no potential to affect groundwater flowpaths towards the source wells.

As above, no fuel storage will be permitted along the electricity line route within the Castlewarren GWS source protection area.

Similarly, due to the short distance (0.5km) of electricity line route immediately upslope of the Shankill GWS source, there is no likelihood of affecting groundwater serving the source spring.

# 4.6 Air Quality & Climate

In order to minimise dust emissions during construction, a series of mitigation measures have been prepared in the form of a Planning-Stage Dust Minimisation Plan. A detailed Dust Minimisation Plan will be formulated prior to the construction phase of the project, and will include the following measures:-



- The on-site access tracks and public roads in the vicinity of the project site shall be regularly cleaned to remove mud, aggregates and debris and maintained as appropriate. All road sweepers shall be water assisted;
- If the access tracks have the potential to give rise to fugitive dust shall be regularly watered, as appropriate, during dry and/or windy conditions;
- In the event of dust nuisance occurring outside the site boundary, movement of materials will be immediately terminated, and satisfactory procedures implemented to rectify the problem before the resumption of operations;
- If issues persist and the above measures are not satisfactorily controlling dust emissions, a wheel washing system with rumble grids to dislodge accumulated dust and mud prior to leaving the site should be installed;
- During movement of materials off-site, trucks will be stringently covered with tarpaulin at all times. Before entrance onto public roads, trucks will be adequately inspected to ensure no potential for dust emissions;
- Material handling systems and site stockpiling of materials will be designed and laid out to minimise exposure to wind. Water misting or sprays will be used as required if particularly dusty activities are necessary during dry or windy periods; and,
- The Dust Minimisation Plan shall be reviewed at regular intervals during the construction phase to ensure the effectiveness of the procedures in place and to maintain the goal of minimisation of dust through the use of best practice and procedures.

At all times, these procedures will be strictly monitored and assessed. In the event of dust nuisance occurring outside the site boundary, movements of materials likely to raise dust will be curtailed and satisfactory procedures implemented to rectify the problem before the resumption of construction operations.

# 4.7 Landscape

Aside from standard construction phase measures to minimise land and vegetation disturbance (such as delineating the works area) and dust emissions (through damping down of access tracks if necessary), no specific landscape and visual mitigation measures are to be implemented. The appropriate management and reinstatement of excavations promptly will ensure that any adverse effects caused, for example, at the site entrance or along the route of the underground electricity line, are minimised insofar as possible.

Similarly, the progressive reinstatement and landscaping of the project site will remediate any short-term adverse effects on the local landscape. As part of the reinstatement and landscaping process, the planting of hedgerows will also be completed at the electricity substation and electrical control unit locations.

## 4.8 Cultural Heritage

Archaeological, architectural and cultural heritage resources will be protected through the following mitigation and monitoring measures:-

- Archaeological monitoring of all excavations associated with construction of the electricity substation shall be carried out. Monitoring will be carried out under licence to the Department of Housing, Local Government and Heritage and the National Museum of Ireland. Provision will be made for the full excavation and recording of any archaeological features or deposits that may be exposed during monitoring;
- Archaeological monitoring of all excavations associated with construction of the



electrical control unit shall be carried out. Monitoring will be carried out under licence to the Department of Housing, Local Government and Heritage and the National Museum of Ireland. Provision will be made for the full excavation and recording of any archaeological features or deposits that may be exposed during monitoring;

- Archaeological monitoring of all excavations associated with construction of the underground electricity line shall be carried out. Monitoring will be carried out under licence to the Department of Housing, Local Government and Heritage and the National Museum of Ireland. Provision will be made for the full excavation and recording of any archaeological features or deposits that may be exposed during monitoring;
- Archaeological monitoring of all excavations at townland, parish, barony and county boundaries shall be carried out. Monitoring will be carried out under licence to the Department of Housing, Local Government and Heritage and the National Museum of Ireland. Provision will be made for the full excavation and recording of any archaeological features or deposits that may be exposed during monitoring; and,
- Written and photographic records will be created of any townland, parish, barony and county boundaries that may be affected. The written and photographic records will be created in advance of excavations commencing on site.

## 4.9 Noise & Vibration

#### 4.9.1 Noise

The contractors involved in the construction phase will be obliged, under contract, to undertake specific noise abatement measures and comply with the recommendations of BS 5228-1:2009+A1:2014 Code of practice for noise and vibration control on construction and open sites – Noise. The following list of measures will be implemented, as relevant, to ensure compliance with the relevant construction noise criteria:-

- No plant or machinery will be permitted to cause a public nuisance due to noise;
- The best means practicable, including proper maintenance of plant, will be employed to minimise the noise produced by on site operations;
- All vehicles and mechanical plant will be fitted with effective exhaust silencers and maintained in good working order for the duration of the contract;
- Compressors will be attenuated models fitted with properly lined and sealed acoustic covers which will be kept closed whenever the machines are in use and all ancillary pneumatic tools shall be fitted with suitable silencers;
- Machinery that is used intermittently will be shut down or throttled back to a minimum during periods when not in use;
- Any plant, such as generators or pumps, which may be required to operate outside of general construction hours will be surrounded by an acoustic enclosure or portable screen;
- During the course of the construction programme, supervision of the works will include ensuring compliance with the limits detailed at Chapter 11 of the EIAR using methods outlined in BS 5228-1:2009+A1:2014 Code of practice for noise and vibration control on construction and open sites – Noise; and,
- The hours of construction activity will be limited to avoid unsociable hours where possible. Construction operations shall generally be restricted to between 07:00 and 19:00 Monday to Friday and between 07:00hrs and 13:00hrs on Saturdays



(unless in the event of an emergency), with no operations on Sundays or public holidays.

Based on assessment of the geological composition of the site, it is concluded that rock breaking is not likely to be required. In the unlikely event that rock breaking is necessary, the following measures will be implemented to mitigate noise emissions:-

- Fit suitably designed muffler or sound reduction equipment to the rock breaking tool to reduce noise without impairing machine efficiency;
- Ensure all air lines are sealed;
- Use a dampened breaking bit to eliminate a 'ringing' sound; and,
- Erect an acoustic screen around breaking activities. Where possible, line of sight between top of machine and reception point should be obscured.

# 4.9.2 Vibration

Vibration from construction activities shall be limited to the values set out at **Chapter** 11 of the EIAR. It should be noted that these limits are not absolute but provide guidance as to magnitudes of vibration that are very unlikely to cause cosmetic damage. Magnitudes of vibration slightly greater than those in the table are normally unlikely to cause cosmetic damage, but construction work creating such magnitudes should proceed with caution. Where there is existing damage these limits may need to be reduced by up to 50%.

Given the substantial distances between locations where vibration may be generated and the nearest sensitive locations, no significant effect is likely to be experienced. Therefore, no mitigation measures are proposed.

## 4.10 Transport & Access

In order to ensure the avoidance of significant effects and reduce the predicted magnitude of effects to the greatest possible extent, a suite of mitigation measures are available which will reduce any likely effects during the construction phase. The following mitigation measures will be implemented:-

- A Traffic Management Plan shall be agreed as part of the Construction Environmental Management Plan (CEMP) with the Planning Authority (Authorities) prior to the commencement of development. The Traffic Management Plan shall include *inter alia* confirmed details of construction material haul routes; confirmed details of vehicle specifications; a materials delivery programme; traffic management measures including details of signage, road closures and diversionary routes; and road reinstatement details;
- Appropriate traffic management; including maintenance of local access and pedestrian access (where safe to do so); shall be implemented to facilitate continued public use of roads where temporary traffic restrictions have to be put in place. Precise details of these measures will be detailed in the Traffic Management Plan;
- Construction phase traffic movements will be limited to 07:00-19:00 Monday to Friday and 07:00–13:00 on Saturdays with no movements on Sundays or public holidays. It may be occasionally necessary to undertake works outside of these hours, for example in the event of an emergency, which would necessitate traffic movements. Where construction activities are necessary outside of the normal working hours, local residents and the Planning Authority (Authorities) will receive prior notification;



- Due to the transient nature of the underground electricity line works, rolling road closures will be implemented where the electricity line is to be installed within the carriageway of public roads. Traffic restrictions shall be kept to minimum duration and extent;
- All reasonable steps shall be taken to ensure that national and regional routes are used to transport all materials to the site, insofar as is possible;
- Prior to, and post, construction; pavement condition surveys will be undertaken along all non-national access routes proposed to be utilised in the delivery of construction materials. Given the high-quality and well-maintained nature of motorways and national routes, it is not assessed as necessary to carry out surveys of these carriageways or structures. Following the completion of the preconstruction surveys, any works which are assessed as necessary to facilitate the delivery of components and materials to the project site shall be undertaken, while any deterioration of carriageways or structures identified in the postconstruction survey shall be put right at the expense of the Developer and to the satisfaction of the Planning Authority (Authorities);
- Appropriate and adequate signage shall be provided at all entrances providing access, safety and warning information;
- At the site entrances leading to the electricity substation and electrical control unit, roadside hedgerows shall be trimmed prior to the commencement of construction to ensure that visibility splays are provided in advance of the delivery of construction materials;
- Sufficient car parking spaces will be available at the temporary construction compound during the construction phase. Additionally, during construction of the underground electricity line, it is likely that agricultural premises will be used for the temporary storage of materials (e.g. ducting, cabling, etc.) and for the parking of construction plant, machinery, and work vehicles (cars, vans, etc.). No parking of cars by persons associated with the project will be permitted on any part of the public road that is not closed to traffic. All staff will be instructed to ensure that private entrances remain unobscured (particularly along the electricity line route);
- A dry wheel washing facility (or facilities) will be provided, as necessary, to prevent any debris being transferred from electricity substation site and the electrical control unit compound to the adjacent public roads. All drivers will be required to ensure that their vehicle is free from dirt and stones prior to departure from the project site. Where conditions exist for dust to become friable, techniques such as damping down of the affected areas will be employed and vehicles/loads will be covered to reduce dust emissions;
- All works within the public road corridor (i.e. underground electricity line) shall be undertaken in consultation with, and agreed in advance with, the Planning Authority (Authorities) and only following receipt of all necessary licences, permits and consents;
- Joint bases will be installed within private lands and not within the public road corridor;
- Road sweeping, particularly along the underground electricity line route, will be carried out as appropriate to ensure construction traffic does not adversely affect road conditions;
- Speed limit compliance will be emphasised to all staff and contractors prior to the commencement of construction during site induction, and will be strictly enforced throughout the construction phase;
- Following the installation of the electricity line ducting, the trench will be backfilled with appropriate material and temporarily reinstated. Following the



installation of the underground electricity line, all public roads within which it is proposed to install the underground electricity line will be subject to a full-width carriageway reinstatement (re-surfacing) of the relevant road section. Road reinstatement specifications and methodologies will be agreed with the Planning Authority (Authorities) prior to the commencement of development and as part of the road opening licencing process;

- The project will not require the delivery of any abnormal-sized or abnormal-weight loads. The electrical transformer to be installed at the electricity substation will be delivered to site via multiple loads; the heaviest of which will have a weight of c. 68-tonnes; and maximum axle loadings shall be strictly enforced in accordance with the Road Traffic (Construction and Use of Vehicles) Regulations 2003 (S.I. No. 5 of 2003). The Developer will engage with all relevant stakeholders once the precise delivery route of the electrical transformer is known. Furthermore, and in accordance with Circular RW18 of 2024 as published by the Department of Transport, the project will not require the delivery of any Exceptional Abnormal Loads;
- A designated contact point and coordinator will be put in place to manage all access arrangements and to interface with the public and the Planning Authority (Authorities); and,
- The electricity substation site and active underground electricity line works area shall be closed, and strictly secured, to the public during the construction phase.

## 4.11 Waste Management

The contractor shall ensure that all waste generated at the project site is managed in an appropriate manner. The precise methods to be implemented are detailed in the accompanying Waste Management Plan (see **Annex 2**) which shall ensure that waste is managed in accordance with all relevant legislation, best practice methods, and in accordance with the waste management priority hierarchy.

Excavated spoil material, which also constitutes 'waste', shall be managed in accordance with the provisions of the accompanying Spoil Management Plan (**Annex 3**). Only material which cannot be re-used for reinstatement or landscaping shall be removed from the project site and disposed of at an approved waste management facility.

## 5.0 Implementation of Environmental Management Measures

In the first instance, the construction phase of the project shall be undertaken in strict compliance with all measures set out in the EIAR and NIS; unless where revised or where required to be revised in order to ensure compliance which a condition of planning consent. All relevant conditions of consent shall be inserted at **Table 1** below.

| Planning Conditions |         |                                             |  |
|---------------------|---------|---------------------------------------------|--|
| Condition No.       | Content | Relevance to Construction<br>Phase (Yes/No) |  |
|                     |         |                                             |  |
|                     |         |                                             |  |
|                     |         |                                             |  |
|                     |         |                                             |  |
|                     |         |                                             |  |

## Table 1: Planning Conditions



This CEMP; which will be further developed prior to the commencement of construction; all associated documentation, construction management plans, and construction method statements shall be prepared to ensure strict accordance with each of the measures of the EIAR, NIS, and conditions of consent. As stated at **Section 1.4** above, it will be the responsibility of the EM to ensure coordination between this CEMP, all associated construction management plans & method statements, and the requirements set out in relation to the project.

# 6.0 Communication Plan

Given the multitude of stakeholders to be involved in the construction phase of the project, a clear and concise communications plan will be implemented to ensure that all matters arising are appropriately reported and recorded. The Communications Plan, which will be developed by the contractor, will include a reporting strategy including, but not limited to, the following personnel:-

- White Hill Wind Limited Project Manager;
- Contractor Project Manager;
- White Hill Wind Limited Project Supervisor Construction Phase (PSCS);
- Contractor Site Foreman;
- Environmental Manager;
- Ecological Clerk of Works;
- Geotechnical Clerk of Works; and,
- Archaeological Clerk of Works.

Additionally, White Hill Wind Limited shall appoint a dedicated Community Liaison Officer (CLO) who shall be responsible for engaging with members of the local community regarding the provision of project updates, etc., and shall also be responsible for relaying any matters raised to the project team.

A list of project contacts, to be developed prior to the commencement of construction and included within the detailed CEMP, shall be made available to all construction staff while a copy shall also be provided at the site offices.

## 7.0 Staff Training & Environmental Awareness

Only staff who have received appropriate training and have the necessary safety training/certification shall be permitted on-site.

All construction phase personnel will receive environmental awareness information as part of their initial site induction. The extent of their induction shall be tailored to the scope of their work; however, as a minimum, all environmental protection matters will be addressed in full. This will ensure that staff are familiar with environmental obligations associated with the construction process and the procedures and measures to be implemented. Staff will also be advised of the likely effects of any noncompliance with the relevant environmental measure.

As described at **Section 1.4**, the EM shall provide regular environmental updates to personnel and shall advise of any improvements which can be implemented.

Tool box talks will be held by the EM, or other relevant personnel at the commencement of each day or at the commencement of new activities. The aims of the tool box talks are to identify the specific work activities that are scheduled for that day or phase of work. In addition, the necessary work method statements will be identified and discussed. Additionally, any non-compliance with a measures in this CEMP will also be discussed with the aim of avoiding a re-occurrence of the same non-compliance.



# 8.0 Emergency Response Procedures

Prior to the commencement of construction, the contractor shall prepare a comprehensive emergency response procedure to be implemented by on-site personnel. This on-site procedure shall be incorporated within the Environmental & Emergency Response Plan (**Annex 1**) to ensure that appropriate procedures are in place to manage any incident and report same to the relevant stakeholders.

## 9.0 Recording & Reporting

Over the course of the construction phase, a significant volume of reporting will be undertaken to record the activities, methodologies, and measures implemented during the construction phase. With regards to environmental recording, the following is a non-exhaustive list of reports/records which are likely to be appended to the CEMP as the construction phase progresses:-

- Site Sign-In Records;
- Weekly Environmental Reports;
- Monthly Environmental Reports;
- Site Visual Inspection Checklists;
- Environmental Audits;
- Ecological Survey Reports;
- Water Quality Monitoring Reports;
- Archaeological Monitoring Reports;
- Geotechnical Monitoring Reports;
- Traffic Management Plans;
- Waste management documentation;
- All relevant licences, consents, and permits;
- All correspondence (internal and external) regarding environmental matters; and,
- Staff Training Records.

# 10.0 Compliance & Review Procedures

## 10.1 Site Inspections & Environmental Audits

Routine inspections of construction activities will be carried out on a daily and weekly basis by the Contractor Project Manager, PSCS, Contractor Site Foreman, EM, and ECoW to ensure all environmental controls, relevant to the construction activities taking place at the time, are in place. Environmental inspections will ensure that the works are undertaken in accordance with this CEMP and all other relevant documentation.

## 10.2 Auditing

The contractor will be responsible for ensuring that all construction staff are aware of the requirement to, and understand the importance of, strictly implementing the procedures of the CEMP. Environmental audits will be undertaken during the construction phase of the project. In contrast to monitoring and inspection activities, audits are designed to identify the underlying causes of non-compliances and not to merely detect the non-compliance itself.

Moreover, audits are the means by which system and performance improvement opportunities may be identified. Environmental audits will be carried out by the contractor or by external personnel acting on their behalf. The impartiality and objectivity of the audit process is crucial in the identification of improvements to the



activities being undertaken at the project site. Environmental audits will be scheduled and conducted at regular intervals to determine whether the CEMP is being appropriately implemented. The findings of the audits will be provided to the White Hill Wind Limited Project Manager, Contractor Project Manager, PSCS, EM, and ECoW.

A sample Environmental Audit is included at **Annex 1**.

# 10.3 Environmental Compliance

As has been set out in the preceding sections, construction activities will be continuously and rigorously assessed to ensure that works are undertaken in accordance with the provisions of the detailed CEMP (to be prepared prior to construction). Where an environmental 'event/occurrence' has been identified, the following definitions shall apply:-

- Near-Miss: An event which has not resulted in an adverse environmental effect but which, if not addressed, could re-occur and result in adverse effects;
- Incident: An event which has occurred and which, if un-controlled, could result in substantial effects; however, on-site measures/procedures avoided such effects;
- Exceedance Event: Where an event has resulted in identifiable adverse effects which exceed the appropriate limit value (e.g. a deterioration of downstream water quality below acceptable limits). An exceedance event usually triggers the cessation of particular activities until an investigation has been completed and additional measures implemented; and,
- Non-Compliance: The identification of an un-agreed deviation from prescribed procedures/measures set out in this CEMP.

## 10.4 Corrective Actions

A corrective action relates to the implementation of revised measures/procedures to rectify an identified environmental matter/concern/issue. Corrective actions will be implemented by the Contractor Project Manager, as advised by the PSCS and EM,

Corrective actions may be required as a consequence of:-

- Environmental Audits;
- Environmental Inspections; Environmental Monitoring;
- Environmental Incidents; and,
- Environmental Complaints.

A Corrective Action Notice will be used to communicate the details of the action required. A Corrective Action Notice will describe the cause and effect of the environmental issue/concern and will detail the recommended corrective action to be implemented.

If an environmental matter/concern/issue arises which requires immediate intervention; direct communications between the Contractor Project Manager, PSCS and EM will be conducted. A Corrective Action Notice will be completed subsequently.

Annex 1 –

Environmental & Emergency Response Plan





White Hill Wind Farm Electricity Substation & Electricity Line

# Planning-Stage Construction & Environmental Management Plan

# Environmental & Emergency Response Plan

# White Hill Wind Limited

Galetech Energy Services Clondargan, Stradone, Co. Cavan Ireland Telephone +353 (0)49 555 5050 www.galetechenergyservices.com



# Contents

| 1.0 | Introduction                                     |                                          |   |
|-----|--------------------------------------------------|------------------------------------------|---|
|     | 1.1                                              | Purpose of this Report                   | 1 |
|     | 1.2                                              | Environmental Incident                   | 1 |
|     | 1.3                                              | Reference Documents                      | 2 |
| 2.0 | ) Requirements of an EERP                        |                                          | 2 |
| 3.0 | Description of the Project                       |                                          |   |
| 4.0 | 0 Incident and Hazard Reporting                  |                                          |   |
| 5.0 | 0 Waste Disposal after Environmental Incidences  |                                          |   |
| 6.0 | Site Induction and Toolbox Talks                 |                                          |   |
| 7.0 | .0 Summary Sheet for Machinery & Plant Operators |                                          |   |
|     | 7.1                                              | Procedures for an Incident               | 3 |
| 8.0 | Con                                              | Communication Plan                       |   |
|     | 8.1                                              | Environmental Response Plan              | 6 |
|     | 8.2                                              | External Contacts                        | 7 |
|     | 8.3                                              | Internal Contacts                        | 7 |
|     | 8.4                                              | Chemical Product & Waste Inventory       | 7 |
|     | 8.5                                              | Pollution Prevention Equipment Inventory | 8 |
|     | 8.6                                              | Site Environmental Incident Report Form  | 8 |





# 1.0 Introduction

Galetech Energy Services (GES), on behalf of White Hill Wind Limited, has prepared this Environmental and Emergency Response Plan (EERP) which should be instigated if an emergency or environmental incident occurs either within the project site or elsewhere linked to the construction of the project.

# 1.1 Purpose of this Report

Many construction and industrial sites have the potential to cause environmental harm which could pose threat to public health, water supplies and wildlife in the event of an environmental incident. The purpose of this report is to outline how, in the event of an emergency, effects on humans and the local environment can be limited through quick action.

This EERP forms part of the pre-commencement requirement for the works and outlines conditions of work for staff, and for every contractor or sub-contractor at the site.

This document is a live document which will be updated regularly and forms part of the Planning-Stage Construction & Environmental Management Plan (CEMP) for the White Hill Wind Farm Electricity Substation & Electricity Line. Consequently, the majority of specific details can only be provided prior to the commencement of construction activities.

It contains details of:-

- Who should be contacted in an emergency;
- Procedures to be followed in an emergency; and
- Staff responsibilities in an emergency.

#### 1.2 Environmental Incident

This EERP should be implemented once there has been an emergency or environmental incident on site or elsewhere linked to the construction of the White Hill Wind Farm Electricity Substation & Electricity Line. Incidents can be a discharge to air, land or water that could cause environmental damage. Causes of environmental incidents on site include:-

- Land Slide;
- Vandalism;
- Fire;
- Leaking plant or equipment;
- Containment Failure;
- Overfilling of containment vessels;
- Discharge of raw or partially treated effluent;
- Wind-blown waste, litter or dust;
- Flooding on site;
- Leaking Portaloo;
- Fuel drips or spills during refuelling;
- Leak from fuel or chemical containers;
- Failure of pumps and pipelines; and
- Contaminated water or sediment/silt entering a waster course or drain.

Any of these incidents could affect drainage systems, surface waters, ecosystems, groundwater and soil. The production of toxic fumes and airborne pollutants could affect air quality which may damage human health, wild and domestic animals and ecosystems.



#### 1.3 Reference Documents

The production of this EERP has been supported by current legislation and will be accounted for in the further development of the appointed contractor's detailed CEMP.

Other guidance documents have been used to develop this EERP; including a Planning-Stage Construction & Environmental Management Plan, Waste Management Plan, Spoil Management Plan and Surface Water Management Plan.

#### 2.0 Requirements of an EERP

This EERP provides guidance for environmental incidents and includes:-

- Summaries of local environmental sensitivities;
- An outline of the construction works and sources to relevant existing environmental plans;
- Key mapping reference points for the site;
- Contact information for key external bodies and emergency response numbers who will assist in the event of an emergency;
- An identification of key staff and 24-hour contact details for those who will assist in the event of an emergency;
- An identification of Inventory of Pollution Prevention Equipment;
- Details of an Inventory of Chemical Products and Waste Inventory on Site\*;
- Details of reporting requirements;
- Details of staff who are trained in the use of spill kits and booms etc.;
- Procedures to be followed in the event of an emergency and an identification of those responsible for re-positioning and moving the plant; and
- A widely available summary sheet for operatives that outlines the key procedures in the event of an emergency.

# 3.0 Description of the Project

White Hill Wind Limited intends to construct the following:-

- A 110kV 'loop-in/loop-out' electricity substation;
- Approximately 320 metres (m) of 110kV underground electricity line between the electricity substation and the Kellis-Kilkenny overhead transmission line and the provision of 2 no. interface masts;
- An electrical control unit at the permitted White Hill Wind Farm site;
- Approximately 8.8km of underground electricity line between the electricity substation and the electrical control unit; and,
- All associated and ancillary site development, access, excavation, construction, landscaping and reinstatement works, including provision of site drainage infrastructure.

The project site traverses the administrative boundary between counties Kilkenny and Carlow; with the electricity substation and c. 3.3km of the underground electricity line located in County Kilkenny and c. 5.5km of the underground electricity line and the electrical control unit located in County Carlow. Electrical equipment suppliers, construction material suppliers and candidate quarries which may supply aggregates are located nationwide.

As well as the reference documents listed in **Section 1.3**, various environmental reports have been prepared for the development including:-

• Environmental Impact Assessment Report (Galetech Energy Services);



- Population & Human Health chapter (Galetech Energy Services);
- Biodiversity chapter (SLR Consulting);
- Land & Soil chapter (Hydro Environmental Services);
- Water chapter (Hydro Environmental Services);
- Material Assets [Transport & Access] chapter (Galetech Energy Services); and
- Natura Impact Statement (SLR Consulting).

#### 4.0 Incident and Hazard Reporting

To ensure that all environmental incidents or hazards are accurately recorded, a reporting system has been developed. The logging of environmental incident reports will ensure that regular revisions and reviews can be made. In the event of an accident/incident, a blank environmental incident report has been attached on the last page of this report that includes details of all non-compliance and corrective actions carried out as a result of any incidents.

#### 5.0 Waste Disposal after Environmental Incidences

In the event of a pollution incident where a spill kit etc. may be used, operatives must dispose of the used equipment by placing them into a sealed bag or container. Used equipment will then be removed from site by a licensed waste contractor to a licensed waste facility.

#### 6.0 Site Induction and Toolbox Talks

It is crucial that all contractors, sub-contractors and staff on site are fully familiar with this EERP. Toolbox talks will be regularly given to the workforce on the aspects of health and safety of this project and, during these talks, they will receive regular reminders of the importance of not only the local environment but of the necessary environmental controls that are in place on site.

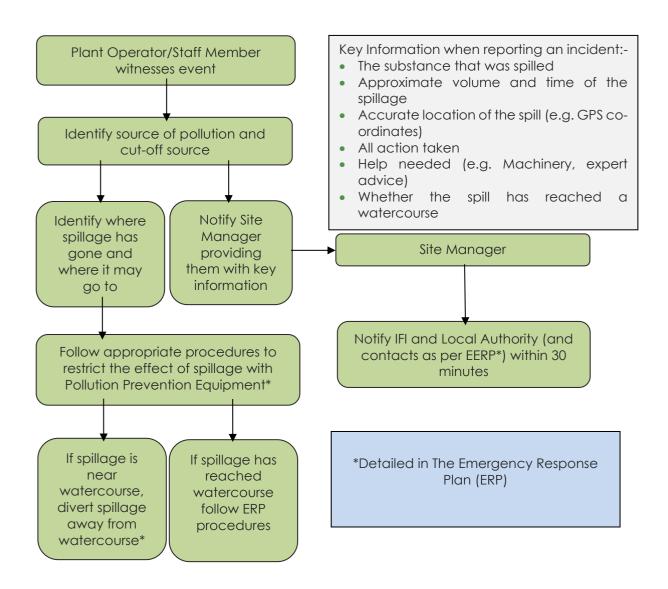
#### 7.0 Summary Sheet for Machinery & Plant Operators

This summary sheet is for all site personnel. A laminated copy will be kept on all site vehicles/machinery.

# 7.1 Procedures for an Incident

The following procedures are a guide when dealing with incidents. To ensure health and safety for yourself and others, this health and safety guidance should be followed at all times alongside applying common sense:-

- 1. Identify the source of the spillage and cut off source if possible through closing a valve or righting container etc.;
- 2. Discontinue all work on site and all operatives will assist in placing spill mats correctly on affected area. Immediately contact Site Manager/main contact;
- 3. Identify the spillage route. If spillage is in close proximity to a watercourse (drainage/ditch/river), divert spillage away from the watercourse through the use of absorbent materials from the spill kit;
- 4. If a watercourse is at risk of contamination from suspended solids from a slope failure, do the following:
  - a. Place straws bales wrapped in geotextile or sand/gravel bags with geotextile curtains immediately in the watercourse(s) at regular intervals downstream from the incident. These sand/straw bags and bales will be removed and replaced with stone filters once water quality is stabilized;




- b. Stone check dams faced with a layer of geotextile will be constructed at critical points along the watercourse; and
- c. Small sumps will be formed intermittently between the check dams to reduce the amount of suspended solids contained in the water;
- 5. If there has been an oil spill in the watercourse, do the following:
  - a. Place flexible absorbent booms across the watercourse, ahead of the contamination within a quiet stretch of water;
  - b. Place absorbent cushions in the water immediately upstream of these booms as well as downstream of the booms; and
  - c. Remove and replace saturated absorbent material as required. Please ensure removed cushions are placed in sealed polythene bags/containers and disposed of by the principal waste contractor;
- 6. Notify all parties in the order listed overleaf. Notification should be made by one member of staff whilst remaining staff present deal with the spill;
- 7. Dig up all contaminated ground as soon as possible. All contaminated materials should be placed in sealed polythene bags/containers and disposed of appropriately by a licensed waste contractor; and
- 8. Complete required record of incident and response into reporting system.

#### 8.0 Communication Plan

A detailed Communication Plan will be provided by the Contactor, in liaison with relevant stakeholders, and will be included in the updated EERP prior to the commencement of construction. An outline Communication Plan is set out below.







# 8.1 Environmental Response Plan

| Incident Response Plan for the White Hill Wind Farm Electricity Substation & Electricity Line<br>Based on template provided in GPP 21 – Guidance for Pollution Prevention |                                                                         |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--|--|
| <b>Site Address:</b><br>Shankill, County Kilkenny; Shankill and<br>Ballygorteen, County Kilkenny; and Moanmore,<br>Lackan and Baunreagh, County Carlow.                   | Coordinates:<br>Map references:                                         |  |  |
| Official Company Address:<br>White Hill Wind Limited<br>Greaghcrotta<br>Tullyco<br>Cootehill<br>County Cavan                                                              |                                                                         |  |  |
| Key Holders for site (Name and Contact numbers):                                                                                                                          |                                                                         |  |  |
| Overview of the activities on site:<br>Include number of employees at different times of                                                                                  | the day:                                                                |  |  |
| Daylight hours:                                                                                                                                                           |                                                                         |  |  |
| Dusk to Dawn                                                                                                                                                              |                                                                         |  |  |
| Weekend Dusk to Dawn:                                                                                                                                                     |                                                                         |  |  |
| Bank Holidays:                                                                                                                                                            |                                                                         |  |  |
| Description of surrounding area:                                                                                                                                          |                                                                         |  |  |
| Date and Version of the plan:                                                                                                                                             | Name & position of person responsible for compiling/approving the plan: |  |  |
| Review date:                                                                                                                                                              | Date of next exercise:                                                  |  |  |
| Objectives of the plan:                                                                                                                                                   |                                                                         |  |  |
| List of external organisations consulted in the prepe                                                                                                                     | aration of this plan with contact details:                              |  |  |
| <b>Distribution list of who has received this plan and</b><br>that you review and revise this plan regularly                                                              | which version: Please note that it is recommended                       |  |  |

# 8.2 External Contacts

| External Contacts               | External Contacts                                                                 |                         |  |  |  |  |
|---------------------------------|-----------------------------------------------------------------------------------|-------------------------|--|--|--|--|
| Contact                         | Office Hours                                                                      | Out of Office           |  |  |  |  |
| Emergency Services              | 999 or 112                                                                        | 999 or 112              |  |  |  |  |
| (Fire/Garda/Ambulance)          |                                                                                   |                         |  |  |  |  |
| Local Garda Station             | Muinebheag (Bagenalstown):<br>059 977 4120                                        | 999 or 112              |  |  |  |  |
| Local Hospital                  | St Luke's General Hospital:<br>056 778 5000                                       | 999 or 112              |  |  |  |  |
| Environment Section             | Kilkenny County Council<br>County Hall<br>John Street<br>Kilkenny<br>056 779 4470 | 081 839 9399            |  |  |  |  |
| Environment Section             | Carlow County Council<br>County Buildings<br>Athy Road<br>Carlow<br>059 913 6231  | 059 917 0300            |  |  |  |  |
| EPA Regional Inspectorate       | Seville Lodge<br>Callan Road<br>Kilkenny<br>056 779 6700                          |                         |  |  |  |  |
| Inland Fisheries Ireland        | 01 884 2600                                                                       | 1890 347 424 (24 hours) |  |  |  |  |
| ESB                             | 01 852 9534                                                                       |                         |  |  |  |  |
| Telecommunications – Eircom/Eir | 1800 475475                                                                       |                         |  |  |  |  |

#### 8.3 Internal Contacts

| Internal Contacts                                                                                                                                      |              |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--|--|--|
| Names and position of staff authorised and trainers to activate and co-ordinate the plan. Staff to be contacted if needed to move or evacuate the site |              |  |  |  |
| Other Staff:                                                                                                                                           | Other Staff: |  |  |  |
| Managing Director                                                                                                                                      |              |  |  |  |
| Site Manager                                                                                                                                           |              |  |  |  |
| Environmental Manager                                                                                                                                  |              |  |  |  |

# 8.4 Chemical Product & Waste Inventory

| Chemical Product & Waste Inventory |                               |              |               |                                       |                        |                                                     |
|------------------------------------|-------------------------------|--------------|---------------|---------------------------------------|------------------------|-----------------------------------------------------|
| Trade<br>name/<br>substance        | Solid/liquid/gas<br>or powder | UN<br>number | Max<br>amount | Location<br>marked<br>on site<br>plan | Type of<br>Containment | Relevant<br>health &<br>Environmental<br>properties |
|                                    |                               |              |               |                                       |                        |                                                     |
|                                    |                               |              |               |                                       |                        |                                                     |
|                                    |                               |              |               |                                       |                        |                                                     |

### 8.5 Pollution Prevention Equipment Inventory

| Pollution Prevention Equipment Inventory (On/Off-Site Resources) |  |  |  |  |  |  |
|------------------------------------------------------------------|--|--|--|--|--|--|
| Type Location Amount Staff contact                               |  |  |  |  |  |  |
|                                                                  |  |  |  |  |  |  |
|                                                                  |  |  |  |  |  |  |

# 8.6 Site Environmental Incident Report Form

| Site:                                      | Do | ate:     |  |
|--------------------------------------------|----|----------|--|
| Time:                                      | We | /eather: |  |
| Report By:                                 | Po | osition: |  |
| White Hill Wind Limited personnel present: | Po | osition: |  |
| Contractor personnel present:              | Po | osition: |  |

| Description of Incident: |  |
|--------------------------|--|
|                          |  |
|                          |  |
|                          |  |
|                          |  |
| Item Spilled:            |  |

| Item Spilled:                   |  |
|---------------------------------|--|
| Estimate of Volume of Spillage: |  |

| List of actions followed<br>once incident was<br>noted | Time: | Corrective Action<br>Action: By: |  |  |
|--------------------------------------------------------|-------|----------------------------------|--|--|
| Who first observed incident?                           |       |                                  |  |  |
| First action                                           |       |                                  |  |  |
| Next action                                            |       |                                  |  |  |
| Time Pollution Hotline<br>was contacted                |       |                                  |  |  |
| Other                                                  |       |                                  |  |  |

#### Details of Clean-Up contractor or how contamination was removed from site:

| Details of how this could be avoided in future:                      |  |
|----------------------------------------------------------------------|--|
| Details of review of internal procedures as result of this incident: |  |

#### Date of Report Completion:



| ltem        | Questions                                                                                                                                                                                                                      | Yes | No | Corrective Acti | Action |  |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|-----------------|--------|--|
|             |                                                                                                                                                                                                                                |     |    | Action:         | By:    |  |
| 1. Miscello | ineous                                                                                                                                                                                                                         | _   |    |                 |        |  |
| 1.01        | Does the contractor carry out<br>regular internal environment<br>audits on the site? Are<br>recommendations recorded<br>and is corrective action<br>monitored?                                                                 |     |    |                 |        |  |
| 1.02        | Have any environment<br>incidents occurred and have<br>these been reported as per on<br>site procedure?                                                                                                                        |     |    |                 |        |  |
| 1.03        | Does the site induction contain<br>a section on environmental<br>requirements, including spill<br>procedures, and is this<br>communicated effectively?                                                                         |     |    |                 |        |  |
| 2. Land     |                                                                                                                                                                                                                                |     |    |                 |        |  |
| 2.01        | Are areas of hard standing<br>(excluding bunded and<br>refuelling areas) appropriately<br>drained?                                                                                                                             |     |    |                 |        |  |
| 2.02        | Have local roads been<br>inspected and cleaned where<br>necessary?                                                                                                                                                             |     |    |                 |        |  |
| 2.03        | Has all test pitting and soil<br>stripping been monitored by<br>an archaeologist?                                                                                                                                              |     |    |                 |        |  |
| 2.04        | Have all site clearance works<br>been checked by an ecologist<br>prior to works?                                                                                                                                               |     |    |                 |        |  |
| 3. Materia  | ls and Equipment                                                                                                                                                                                                               |     |    |                 |        |  |
| 3.01        | Is there knowledge of the IFI<br>Guidelines on protection of<br>Fisheries During Construction<br>Works in and Adjacent to<br>Waters (2016) and OPW<br>Environmental Guidance:<br>Drainage Maintenance &<br>Construction (2019) |     |    |                 |        |  |
| 3.02        | Are transformers/generators<br>located in secondary<br>containment bunds?                                                                                                                                                      |     |    |                 |        |  |
| 3.03        | Are all bunds capable of<br>containing 110% of the volume<br>of the largest container?                                                                                                                                         |     |    |                 |        |  |
| 3.04        | Is refuelling carried out in a designated refuelling bay?                                                                                                                                                                      |     |    |                 |        |  |
| 3.05        | Does all site drainage on hard<br>standing drain to an oil<br>interceptor?                                                                                                                                                     |     |    |                 |        |  |
| 3.06        | Is the designated area for oil,<br>fuel and chemical storage<br>appropriately sited (i.e. on                                                                                                                                   |     |    |                 |        |  |



|                |                                                                                                                                                                                                                                                                  |  | 1 |  | <u>ا</u> |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|---|--|----------|
|                | hard standing at least 10m<br>from a watercourse)?                                                                                                                                                                                                               |  |   |  |          |
| 3.07           | Are there procedures in place<br>to monitor bund integrity and<br>manage bund rainwater<br>levels?<br>Are these followed and<br>recorded?                                                                                                                        |  |   |  |          |
| 3.08           | Is there awareness that oil or<br>residue from contaminated<br>water removed from bunds<br>should be disposed of as<br>special waste and not<br>discharged to land or the<br>water environment? (oil<br>absorbent materials (pads<br>etc.) should be used first) |  |   |  |          |
| 3.09           | Are all drums and mobile plant<br>(e.g. generators) placed on<br>drip tray more than 10m from<br>any watercourse?                                                                                                                                                |  |   |  |          |
| 3.10           | Is all plant maintained in a<br>good state of leaks?<br>Are there records of this?                                                                                                                                                                               |  |   |  |          |
| 3.11           | Are there adequate spill kits<br>available and stored in close<br>proximity to potential risks?                                                                                                                                                                  |  |   |  |          |
| 3.12           | Are all refuelling browsers<br>double skinned, locked when<br>not in use, and in a good state<br>of repair?                                                                                                                                                      |  |   |  |          |
| 3.13           | Is there evidence of<br>unmanaged/unrecorded<br>fuel/oil spillages on site?                                                                                                                                                                                      |  |   |  |          |
| 3.14           | Are dry or wet wheel washing<br>facilities fully operational and<br>effective?                                                                                                                                                                                   |  |   |  |          |
| 3.15           | If wet wheel washing facilities<br>are required, are these closed<br>systems with no discharge to<br>the water environment?                                                                                                                                      |  |   |  |          |
| 3.16           | Are there laboratory<br>certificates (accredited by the<br>Irish National Accreditation<br>Board) to confirm that<br>imported material stone<br>aggregate brought onto site is<br>free from any contamination?                                                   |  |   |  |          |
| 4. Noise, Dust |                                                                                                                                                                                                                                                                  |  |   |  |          |
| 4.01           | Are there facilities to dampen<br>stockpiles and site working<br>areas/roads to suppress dust?                                                                                                                                                                   |  |   |  |          |
| 4.02           | Are vehicles carrying loose<br>material sheeted at all times?                                                                                                                                                                                                    |  |   |  |          |
| 4.03           | Are construction works, or deliveries of materials to and                                                                                                                                                                                                        |  |   |  |          |



|          | from the department, audible at noise sensitive premises?                                                                                          |  |  |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 4.04     | Has all external construction<br>lighting received the approval<br>of the planning authority?                                                      |  |  |
| 5. Waste |                                                                                                                                                    |  |  |
| 5.01     | Is the site tidy and free from litter?                                                                                                             |  |  |
| 5.02     | Is there evidence of waste beyond the site boundary?                                                                                               |  |  |
| 5.03     | Is waste segregated and kept<br>securely in containers in clearly<br>designated areas?                                                             |  |  |
| 5.04     | Does all waste leaving the site have the appropriate duty of care paperwork?                                                                       |  |  |
| 5.05     | Is all waste leaving the site<br>being taken to an<br>appropriately licensed site?                                                                 |  |  |
| 5.06     | Does all special/hazardous<br>waste (e.g. oil contaminated<br>soils, waste oil) have the<br>appropriate Special Waste<br>Consignment Note?         |  |  |
| 5.07     | Is material re-used/recycled on site where possible?                                                                                               |  |  |
| 5.08     | Are waste management<br>practices in line with the site<br>waste management plan?                                                                  |  |  |
| 5.09     | Are relevant Waste<br>Management Exemptions in<br>place for use of waste on site<br>(e.g. use of waste concrete to<br>create foundation sub-base)? |  |  |
| 5.10     | Is there any evidence of burning on site?                                                                                                          |  |  |
| 5.11     | Is there any evidence of unlicensed burial of waste?                                                                                               |  |  |
| 6. Water |                                                                                                                                                    |  |  |
| 6.01     | Do all discharges to land or<br>watercourses have<br>appropriate authorization from<br>Local Authorities/IFI?                                      |  |  |
| 6.02     | Do all watercourses<br>engineering (bank protection,<br>crossing etc.) have the<br>appropriate authorization from<br>Local Authorities/ IFI?       |  |  |
| 6.03     | Do any abstractions from a<br>watercourse or groundwater<br>body have the appropriate<br>authorization from Local<br>Authorities/ IFI?             |  |  |
| 6.04     | Has confirmation for the SUDS design for access roads been                                                                                         |  |  |



|      | gained from Local Authorities/                                                                                                                                                                         |  |  |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|      | IFI?                                                                                                                                                                                                   |  |  |
| 6.05 | Are cut-off ditches installed on<br>the uphill side of the working<br>area to avoid contaminated<br>surface water run-off?                                                                             |  |  |
| 6.06 | Has vegetation<br>removal/clearance of the site<br>been minimized to avoid<br>unnecessary areas of bare-<br>ground?                                                                                    |  |  |
| 6.07 | Is adequate treatment (e.g.<br>settlement<br>tank/lagoons/discharge to<br>land) provided to prevent silt<br>contaminated water entering<br>watercourses and<br>groundwater?                            |  |  |
| 6.08 | Has vegetation<br>removal/clearance of the site<br>been minimized to avoid<br>unnecessary areas of bare-<br>ground?                                                                                    |  |  |
| 6.09 | Have buffer-strips been left<br>between working area and<br>watercourses?                                                                                                                              |  |  |
| 6.10 | Is plant operating in the watercourse?                                                                                                                                                                 |  |  |
| 6.11 | Have all culverts been installed<br>at the base of stockpiles<br>situated within close proximity<br>to watercourses?                                                                                   |  |  |
| 6.12 | Have silt fences been installed<br>at the base of stockpiles<br>situated within close proximity<br>to watercourses?                                                                                    |  |  |
| 6.13 | Are there adequate controls<br>on site construction roads to<br>minimize sediment runoff into<br>watercourses (in particular, are<br>the adequate flow attention<br>measures within surface<br>drain?) |  |  |
| 6.14 | Are there any sign of decaying<br>straw bales in watercourses?<br>(this could lead to organic<br>pollution of the watercourse)                                                                         |  |  |
| 6.15 | Are silt traps regularly maintained?                                                                                                                                                                   |  |  |
| 6.16 | Has ease of maintenance<br>been considered in the design<br>of permanent drainage<br>features?                                                                                                         |  |  |
| 6.17 | Is there evidence of<br>contamination of any<br>watercourse (e.g. with oil,                                                                                                                            |  |  |



|              | sediment, concrete, waste) in the vicinity of the works?                                                                                                                                                |  |  |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 6.18         | Is monitoring of potential<br>effects on watercourses<br>carried out on a regular basis<br>and fully recorded?                                                                                          |  |  |
| 6.19         | Are dewatering operations<br>being carried out in such a<br>way to minimize sediment<br>contamination?                                                                                                  |  |  |
| 6.20         | Is drainage and run off in<br>concrete batching areas<br>adequate?                                                                                                                                      |  |  |
| 6.21         | Are adequate pollution<br>prevention measures<br>considered and put in place<br>during concrete pours?                                                                                                  |  |  |
| 7. Landscape |                                                                                                                                                                                                         |  |  |
| 7.01         | Have earthworks been<br>designed to promote<br>successful re-instatement of<br>vegetation?                                                                                                              |  |  |
| 7.02         | Are reinstatement and<br>restoration works being<br>implemented in a timely<br>manner as per the<br>requirements of the Contract?                                                                       |  |  |
| 8. Ecology   |                                                                                                                                                                                                         |  |  |
| 8.01         | Have storage sites (soil, plant<br>etc.) been sited on areas of<br>lower quality habitat where<br>possible?                                                                                             |  |  |
| 8.02         | Have buffer zones been<br>constructed and maintained<br>around designated protected<br>species exclusion areas (e.g.<br>red squirrel dreys, water vole<br>habitats, otter holts, badger<br>holts etc.)? |  |  |
| 8.03         | Have toolbox talks on the<br>subject of ecology and<br>environmental responsibilities<br>on site been delivered?<br>Have attendance records<br>been maintained for these?                               |  |  |
| 9. Documento | ation Check                                                                                                                                                                                             |  |  |
| 9.01         | Start-up meeting record                                                                                                                                                                                 |  |  |
| 9.02         | Full contacts list in CEMP                                                                                                                                                                              |  |  |
| 9.03         | Induction records                                                                                                                                                                                       |  |  |
| 9.04         | Pollution Prevention Measures<br>Register                                                                                                                                                               |  |  |
| 9.05         | Geotechnical Risk Register                                                                                                                                                                              |  |  |
| 9.06         | Weekly meeting minutes                                                                                                                                                                                  |  |  |



| 9.07 | Records of environmental<br>checks and routine monitoring<br>of mitigation measures            |  |  |
|------|------------------------------------------------------------------------------------------------|--|--|
| 9.08 | Water Quality Monitoring<br>Results                                                            |  |  |
| 9.09 | Safety and Environmental<br>Awareness Reports (SEARs).<br>Filed and entered in<br>database?    |  |  |
| 9.10 | Safety and Environmental<br>Audit Reports for the site.<br>(If yes, insert date of last audit) |  |  |
| 9.11 | Contractor's Environmental<br>Plans (or Construction Method<br>Statements)                     |  |  |

Annex 2 –

Waste Management Plan





White Hill Wind Farm Electricity Substation & Electricity Line

# Planning-Stage Construction & Environmental Management Plan

# Waste Management Plan

# White Hill Wind Limited

Galetech Energy Services Clondargan, Stradone, Co. Cavan Ireland Telephone +353 (0)49 555 5050 www.galetechenergyservices.com



# Contents

| 1.0 | Intro | duction                          | 1 |
|-----|-------|----------------------------------|---|
|     | 1.1   | Purpose of this Report           | 1 |
|     | 1.2   | Scope & Requirements             | 1 |
|     | 1.3   | Waste Policies & Legislation     | 1 |
|     | 1.4   | Reference Documents              | 3 |
| 2.0 | Req   | uirements of a WMP               | 3 |
|     | 2.1   | Planning                         | 3 |
|     | 2.2   | Implementation                   | 3 |
|     | 2.3   | Monitoring                       | 4 |
|     | 2.4   | Review                           | 4 |
| 3.0 | Gen   | eral Waste Management Principles | 4 |
| 4.0 | Турі  | cal Waste Streams                | 6 |
|     | 4.1   | Waste Inventory                  | 6 |
|     | 4.2   | Management of Waste              | 7 |





### 1.0 Introduction

Galetech Energy Services (GES), on behalf of White Hill Wind Limited, has prepared this Waste Management Plan (WMP) to detail the measures to be implemented for the control, management and monitoring of waste associated with the project.

#### 1.1 Purpose of this Report

The objective of this WMP is to minimise the quantity of waste generated by construction activities, to maximise the use of materials in an efficient manner and to maximise the segregation of construction waste materials on-site to produce uncontaminated waste streams for off-site recycling.

The WMP shall be implemented throughout the construction phase of the development to ensure that:-

- All site activities are effectively managed to minimise the generation of waste and to maximise the opportunities for on-site reuse and recycling of waste materials;
- All waste materials are segregated into different waste factions and stored onsite in a managed and dedicated waste storage area; and
- All waste materials generated by site activities are removed from site by appropriately permitted waste haulage contractors and that all wastes are disposed of at approved waste licensed / permitted facilities in compliance with the Waste Management Act 1996 and all associated waste management regulations.

#### 1.2 Scope & Requirements

This WMP forms part of the pre-commencement requirement for the works and outlines conditions of work for staff, and for every contractor or sub-contractor at the site. The contractor will continually oversee changes to this document and will work alongside the Environmental Manager (EM) prior to any work commencing.

This document is a live document which will be updated regularly and forms part of the Planning-Stage Construction & Environmental Management Plan (CEMP) for the project. Consequently, the majority of specific details can only be provided prior to the commencement of construction activities.

#### 1.3 Waste Policies & Legislation

The Department of the Communications, Climate Action & Environment published A Waste Action Plan for a Circular Economy – Ireland's National Waste Policy 2020-2025 in 2020. One of its guiding principles is to minimise waste and, therefore, it is key that the development has an efficient waste management plan in place.

The European Union (Waste Directive) (Amendment) Regulations 2016 ('the Regulations') imply a duty on all waste producers to take measures to apply the waste hierarchy priority order. In these Regulations, the 'Act of 1996' refers to the Waste Management Act 1996 (No. 10 of 1996) and 'Principal Regulations' refers to the European Communities (Waste Directive) Regulations 2011 (S.I. No. 126 of 2011). The 'Waste Directive' refers to Directive 2008/98/EC of the European Parliament.

The Waste Management Priority Hierarchy, which the developer is obligated to apply in the management of waste, is as follows:-



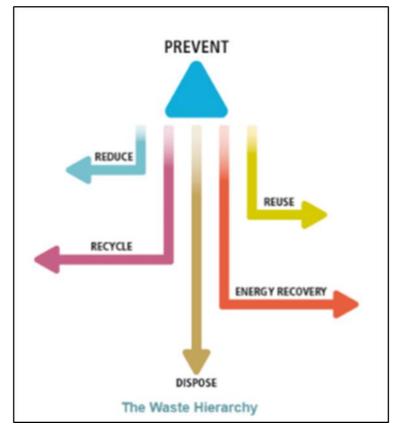



Figure 1: Waste Management Hierarchy

The waste management hierarchy shown above applies to all waste, including hazardous waste. The diagram conveys that above all, the prevention of waste production is the top priority.

The PCB/PCT Directive (Directive 96/59/ EC on the disposal of polychlorinated biphenyls and polychlorinated terphenyls) deals with the disposal of certain hazardous chemicals that represent a particular threat to the environment and to human health.

The European Communities (Carriage of Dangerous Goods by Road and Use of Transportable Pressure Equipment) (Amendment) (No. 2) Regulations 2017 (S.I No. 282 of 2017) shall be adhered to in the case of transportation to and from the site of any dangerous goods.

The contractor, in accordance with the abovementioned Directives, is legally required to:-

- Prevent waste disposal constituting a public nuisance through excessive noise levels or unpleasant odours, or to degrade places of special natural interest;
- Prohibit the dumping or uncontrolled disposal of waste;
- Ensure that the disposal and recovery of waste does not present a risk to water, air, soil, plants and animals;
- Ensure that waste treatment operations are licensed;
- Prepare a Waste Management Plan;
- Require waste collectors to have special authorisation and to keep records; and,
- Ensure that the waste which cannot be prevented or recovered is disposed of without causing environmental pollution.



The EU Integrated Pollution Prevention and Control (IPPC) Directive (Directive 96/61/EC) provides for a permit system for activities including waste management. In adherence with this Directive, the contractor must:-

- Be in possession of a waste permit for waste disposal; and
- Be prepared at all times for inspection regarding monitoring of waste activities.

#### 1.4 Reference Documents

The production of this WMDP has been supported by best practice manuals, including the Best Practice Guidelines on the Preparation of Waste Management Plans for Construction and Demolition Projects (Department of the Environment, Heritage and Local Government, 2006).

Other guidance documents have been used to develop this WMP; including a Planning-Stage Construction & Environmental Management Plan, Spoil Management Plan, Surface Water Management Plan, and Environmental & Emergency Response Plan.

#### 2.0 Requirements of a WMP

There are four stages to be followed in the management of waste:-

- Planning;
- Implementation;
- Monitor; and,
- Review.

#### 2.1 Planning

During the planning/design/development stages of the project, the nature of the site has been accounted for as well as the environmental considerations and the design of the project. Insightful planning at the early stages will help minimise the quantity of waste produced.

#### 2.2 Implementation

The detailed WMP, to be prepared prior to construction, will implement the management of the following:-

- A brief of waste types expected to be produced;
- Estimates of quantum of each type of waste expected to be produced;
- An explanation of how the contractor aims to minimise the different waste types produced prior to any activity that generates this waste; and
- Procedures for identification of the waste management actions proposed for each different waste type, including re-using, recycling, recovery and disposal (as per the waste hierarchy priorities).

All workers will be fully briefed of waste management procedures and aware of their requirements under the WMP. All site visitors will be briefed on appropriate waste storage and disposal units. Littering will not be tolerated and all personnel will have a duty to challenge those who do not comply with WMP procedures.



### 2.3 Monitoring

#### 2.3.1 Checks and Records

All stores on site of oil, fuel and chemicals should be visually inspected on a regular basis, especially during extreme weather conditions. Visual inspections will reveal evidence of leaks, spills or contamination.

Records of all visual checks must be maintained and be made available upon request for inspection. The topic of waste management will be regularly discussed during team meetings and, as required, waste management practices should be continually revised.

#### 2.3.2 Waste Inventory

A waste inventory should be continually updated and will include a list of all waste materials leaving the site for disposal as well as the name of the appropriately licensed operator and intended disposal facility. A waste inventory will be added to this plan by the contractor.

#### 2.3.3 Monitoring of WMP

The contractor will appoint the EM to implement and monitor the WMP. The WMP should include an inventory of the types of estimates of the waste to be produced on site. The aim will be to keep the volumes of waste produced below the estimates of waste to be produced. The EM will ensure that a waste audit is carried out every 6-months.

#### 2.4 Review

Upon completion of the construction phase, a waste management review will be undertaken. The aim will be to measure compliance with the WMP objectives and to consider lessons learnt. The review will be carried out by the EM in conjunction with the contractor.

#### 3.0 General Waste Management Principles

- All personnel will be made aware of the objectives of this WMP and their responsibilities to minimise the generation of waste and, where it arises, to ensure its appropriate management;
- The generation of waste products will be minimised insofar as possible;
- Appropriate management, storage and disposal procedures will prevent pollution in compliance with legislation;
- All waste storage receptacles shall be secured within the development site;
- All waste receptacles shall be maintained in good condition;
- No waste receptacles shall be stored within 10m of any surface water feature;
- For general waste, wheelie bins should be selected or, where required, covered skips should be obtained;
- All waste to be transported off-site shall only be removed by a licenced waste carrier. Local waste carriers and disposal facilities will be selected where possible;
- Maintain appropriate waste records. Such records must detail:-
  - An adequate description of the waste;
  - Where the waste came from;



- The appropriate code from the List of Wastes Regulations for waste (commonly referred to as the EWC code);
- Information on the quantity and nature of the waste and how it is contained;
- Names and addresses of the transferor (the person currently in control of the waste) and the transferee (usually either a registered waste carrier or a waste management license holder (waste manager);
- The Standard Industry Classification (SIC) CODE (2007 or 2003 for hazardous waste only) of the business from where the waste was received;
- Where applicable, indicate that the waste hierarchy has been complied with;
- The place, date and time of transfer of the waste. If using a season ticket, the period for which it is valid (i.e., valid from dd/mm/yyyy to dd/mm/yyyy); and
- If the waste is being taken to landfill the transfer note must also contain details of any treatments or processes that have already been applied;
- Waste records will be stored for a period of 3-years. Where records are provided through an online portal, access to the portal shall be maintained by the relevant contractor;
- Only trained operatives should handle hazardous substances. All stored hazardous waste will be clearly labelled;
- No hazardous waste shall be removed from site in the absence of all appropriate documentation;
- No storage of hydrocarbons or any toxic waste chemicals should occur within 50m of a watercourse/drainage ditch;
- All associated hazardous waste residuals (including used oil spill kits), such as oil, solvents, used absorbent materials on minor oil spills, glue and solvent based paint containers will be stored within appropriately covered skips prior to removal by a suitable local authority or EPA approved waste management contractor for off-site treatment/recycling/disposal;
- Waste storage areas will be clearly located and made known to all operatives;
- Oil waste shall be stored in a double skinned tank. However, if a double skinned tank is not available, the oil waste will be bagged and stored in a secure storage vessel with secondary containment in the form of a drip tray or bund. The oil waste shall then be removed from site by a specialist contractor;
- Oily wastes, such as rags and spill absorption material, shall be placed in a bag and stored within a secure container within secondary containment which is capable of ensuring no spilled or collected oil waste escapes. The oil wastes shall then be removed from site by a specialist contractor;
- Obsolete electronic equipment, e.g., computers and associated accessories shall be labelled as WEEE (waste electrical and electronic equipment) and stored safely for a maximum of 12-months prior to sending for recycling;
- All waste will be transported from the site as soon as practicable to prevent overfilling of waste containers; and,
- Frequency of Checks: the contractor will ensure that all storage facilities are checked on a weekly basis. The checklist for completion is attached below.

| Waste Checklist      |              |            |  |  |  |
|----------------------|--------------|------------|--|--|--|
| Waste area checked   | Date Checked | Checked By |  |  |  |
| General office waste |              |            |  |  |  |
| Bowser               |              |            |  |  |  |
| Portaloo             |              |            |  |  |  |
| Excavated soil       |              |            |  |  |  |

| Washings        |  |
|-----------------|--|
| Concrete        |  |
| Oil             |  |
| Hazardous Waste |  |

#### 4.0 Typical Waste Streams

#### 4.1 Waste Inventory

The typical waste arising during the construction of the project is provided below. This inventory will be further expanded upon by the contractor prior to the commencement of construction.

| Waste Item                                                                                                                   | EWC                | Disposal Method                                                       |
|------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------------------------------------------------------|
| Re-use                                                                                                                       |                    |                                                                       |
| Non-contaminated spoil arising from groundworks<br>(e.g., topsoil, subsoil, vegetation, stone aggregates,<br>concrete, etc.) | 170107 &<br>170504 | Re-use locally within the site<br>for reinstatement or<br>landscaping |
| Wood Pallets                                                                                                                 | 150103             | Return to supplier                                                    |
| Recyclable                                                                                                                   |                    |                                                                       |
| Aluminium Cans                                                                                                               | 150104             | To recycling centre                                                   |
| Cardboard                                                                                                                    | 150101             | To recycling centre                                                   |
| Plastic Cups                                                                                                                 | 200139             | To recycling centre                                                   |
| Metals                                                                                                                       | 020110             | To appropriate recycling<br>centre                                    |
| Glass (bottles/containers)                                                                                                   | 200102             | To recycling centre                                                   |
| Packaging (general)                                                                                                          | 150106             | To recycling centre                                                   |
| Paper (general)                                                                                                              | 200101             | To recycling centre                                                   |
| Plastics (general)                                                                                                           | 150102             | To recycling centre                                                   |
| Plastics (bottlers, containers, etc.)                                                                                        | 200139             | To recycling centre                                                   |
| Polystyrene                                                                                                                  | 200104             | To recycling centre                                                   |
| Wood/Timber packaging (e.g., crates)                                                                                         | 150103             | To recycling centre                                                   |
| Disposal                                                                                                                     |                    |                                                                       |
| Food Waste                                                                                                                   | 200108             | Disposal by local contractor                                          |
| General Waste                                                                                                                | 200301             | Disposal by local contractor                                          |
| Foul Waste                                                                                                                   | 190805             | Collection by specialist contractor                                   |
| Aerosol Cans                                                                                                                 | 160504             | Disposal by local contractor                                          |
| Diesel (hazardous waste)                                                                                                     | 130701             | Collection by specialist contractor                                   |
| Greases (hazardous waste)                                                                                                    | 130899             | Collection by specialist contractor                                   |
| Oily water mix from bunds/sumps (hazardous waste)                                                                            | 130507             | Collection by specialist contractor                                   |
| Insulating Oils with PCB contamination (hazardous waste)                                                                     | 130301             | Collection by specialist contractor                                   |
| Synthetic Oils (hazardous waste)                                                                                             | 130310             | Collection by specialist contractor                                   |



| Other Oils (hazardous waste) | 130203             | Collection by specialist contractor |
|------------------------------|--------------------|-------------------------------------|
| Oil Drums (hazardous waste)  | 150110 &<br>150104 | Collection by specialist contractor |

#### 4.2 Management of Waste

All waste will be segregated and securely stored at the temporary construction compound, in skips and receptacles, which will be covered to protect the contents from the weather. A licensed operator will collect and transfer the skips/receptacles of both recyclable and non-recyclable wastes as they are filled. Where this is not practicable, or where the quantity of waste is small, the contractor will remove the waste to his yard on a daily basis for onward disposal.

A list of licensed operators will be identified provided below.

| Permit<br>Number | Name of Permit Holder | Address of Waste<br>Facility | Type of Waste<br>Permitted |
|------------------|-----------------------|------------------------------|----------------------------|
|                  |                       |                              |                            |
|                  |                       |                              |                            |
|                  |                       |                              |                            |
|                  |                       |                              |                            |

Annex 3 –

Spoil Management Plan





White Hill Wind Farm Electricity Substation & Electricity Line

# Planning-Stage Construction & Environmental Management Plan

# Spoil Management Plan

White Hill Wind Limited

Galetech Energy Services Clondargan, Stradone, Co. Cavan Ireland Telephone +353 (0)49 555 5050 www.galetechenergyservices.com



# Contents

| 1.0 | Intro | duction1                                     |
|-----|-------|----------------------------------------------|
|     | 1.1   | Purpose of this Report1                      |
|     | 1.2   | Aims of this SMP1                            |
|     | 1.3   | Reference Documents1                         |
| 2.0 | Desc  | cription of the Project1                     |
| 3.0 | Desc  | cription of Baseline Environment2            |
|     | 3.1   | Site Location2                               |
|     | 3.2   | Topography2                                  |
|     | 3.3   | Geological Environment                       |
|     | 3.4   | Hydrological Environment                     |
| 4.0 | Gen   | eral Spoil Management Proposals4             |
| 5.0 | Estin | nated Excavation Quantities4                 |
|     | 5.1   | Spoil Generation & Management5               |
| 6.0 | Use   | of Excavated Material5                       |
|     | 6.1   | Landscaping/Reinstatement of Infrastructure5 |
|     | 6.2   | Permanent Storage5                           |
|     | 6.3   | Disposal Off-Site                            |
| 7.0 | Con   | clusion6                                     |





# 1.0 Introduction

Galetech Energy Services (GES), on behalf of White Hill Wind Limited, has prepared this Spoil Management Plan (SMP) to detail the appropriate management of excavated material arising from the construction of the White Hill Wind Farm Electricity Substation & Electricity Line ('the project').

# 1.1 Purpose of this Report

This SMP provides the framework for the management of spoil at the project site for contractors and incorporates the measures set out in the various environmental assessment documents associated with the development. The purpose of this report is to ensure that spoil is managed safely and re-used without resulting in any adverse environmental effects, and to ensure that all spoil handling/management activities are carried out in accordance with best practice methods.

This is a live document and will be updated by the appointed contractor prior to the commencement of development. Prior to the commencement of construction, the updated SMP will be reviewed by the Environmental Manager (EM) to confirm the appropriateness of the measures set out therein.

# 1.2 Aims of this SMP

The overall objective of this SMP is to provide for the appropriate management of excavated material arising from the construction of the project. In doing so, the reuse of excavated material, locally to its excavation, will be maximised through reinstatement and landscaping proposals.

The reinstatement of excavated materials will occur as close to the site of excavation as possible. Excavated material horizons (topsoil and subsoil, etc.) will be stored separately to ensure appropriate re-use; and will be replaced in sequence and to depths similar to those recorded prior to excavation.

Excavated material may also be used in the landscaping of the site; for example, along access tracks and around the electricity substation compound to ensure consistent ground profiles. Again, material will be placed close to its source and in a fashion which allows for vegetative re-growth thus allowing for spoil to be assimilated into the local environment.

# 1.3 Reference Documents

The production of this SMP has been supported by best practice manuals and will be accounted for in the further development of the appointed contractor's detailed CEMP.

Other documents have been used to develop this SMP; including a Planning-Stage Construction & Environmental Management Plan, Surface Water Management Plan, Waste Management Plan and Environmental & Emergency Response Plan.

# 2.0 Description of the Project

White Hill Wind Limited intends to construct the project which will consist of:-

- A 110kV 'loop-in/loop-out' electricity substation;
- Approximately 320 metres (m) of 110kV underground electricity line between the electricity substation and the Kellis-Kilkenny overhead transmission line and the provision of 2 no. interface masts;



- An electrical control unit at the permitted White Hill Wind Farm site;
- Approximately 8.8km of underground electricity line between the electricity substation and the electrical control unit; and,
- All associated and ancillary site development, access, excavation, construction, landscaping and reinstatement works, including provision of site drainage infrastructure.

The project site traverses the administrative boundary between counties Kilkenny and Carlow; with the electricity substation and c. 3.3km of the underground electricity line located in County Kilkenny and c. 5.5km of the underground electricity line and the electrical control unit located in County Carlow. Electrical equipment suppliers, construction material suppliers and candidate quarries which may supply aggregates are located nationwide.

In addition to the reference documents listed in **Section 1.3**, various environmental reports have been prepared for the development including:-

- Environmental Impact Assessment Report (Galetech Energy Services);
- Biodiversity chapter (SLR Consulting);
- Land & Soil chapter (Hydro Environmental Services);
- Water chapter (Hydro Environmental Services); and
- Natura Impact Statement (SLR Consulting).

#### 3.0 Description of Baseline Environment

#### 3.1 Site Location

The project will be located approximately 11km northeast of Kilkenny City, c. 15km southwest of Carlow Town, c. 3km west of Muine Bheag (Bagenalstown) and c. 1km north of Paulstown. The electricity substation will be located within the townland of Shankill, County Kilkenny; Shankill and Ballygorteen, County Kilkenny; and Annagar, Lackan and Baunreagh, County Carlow. The electrical control unit will be located within the townland of Baunreagh, County Carlow. The underground electricity line will, from the electricity substation, be located within private lands and within the carriageways of locally-classed public roads.

The project site is located at the southern extent of the Castlecomer Plateau. The Castlecomer Plateau is an elevated plateau located in south County Laois, northwest County Carlow and northeast County Kilkenny. The Castlecomer Plateau is characterised by undulating hills and steep escarpments at its fringes. Dissecting the lowlands on either side of the plateau are the Barrow and Nore rivers, which lie to the east and west respectively. The lowlands are a mixture of pasture and tillage with fields typically bordered by mature broadleaf tree lines and hedgerows. Agricultural land uses extend into the upland areas in the form of more marginal grazing with scrubby hedgerow field boundaries. Extensive commercial conifer plantations emerge on higher slopes throughout the Castlecomer Plateau.

# 3.2 Topography

The project site, and surrounding topography, are typical of this region and comprise an undulating landscape with the ground elevation rising considerably from the substation along the route of the underground electricity line to the electrical control unit and the permitted White Hill Wind Farm site. Ground elevations at the electricity substation range between 68 metres (m) and 73m above ordnance datum (AOD). Ground elevations along the electricity cable route generally range between 68m



and 310m. To the south and east of the project site, the terrain is gently undulating and generally trends towards the River Barrow located c. 3km to the east.

### 3.3 Geological Environment

Based on the GSI/Teagasc soils mapping (<u>www.epa.ie</u>), the location of the electricity substation is overlain by poorly drained, mainly basic mineral soils (BminPD). The location of the electrical control unit is mapped as shallow acid poorly drained mineral soils (AminSP).

The mapped soil types along the underground electricity line chiefly consist of a mixture of acidic natured soils such as shallow well drained mineral soils (AminSW), poorly drained mineral soils (AminPD), deep well drained mineral soils (AminDW), Shallow, rocky, peaty/non-peaty mineral complexes (AminSRPT) and poorly drained mineral soils (AminSP). Alluvium soils are mapped briefly (c. 400m section) along route where the Shankill Stream nears the local road towards the southern section of the route.

Till derived from limestones (TLs) is mapped to underly the electricity substation. There is little subsoil coverage in the more upland areas of the project site underlying the electrical control unit, as bedrock outcrop/subcrop (Rck) is mapped here by the GSI.

Similarly, there is little subsoil coverage mapped to underly much of the electricity line route as bedrock outcrop/subcrop (Rck) is dominant throughout. Any subsoils that are mapped along the route are chiefly Till derived from Namurian sandstones and shales (TNSSs). Alluvium subsoils are also mapped briefly along the southern section of the route near the Shankill Stream. As the route progresses nearer to the electricity substation, the subsoils are mapped as Till derived from limestones (TLs).

As part of the EIAR for the White Hill Wind Farm, 2 no. trial pits (referred to herein as TP1/CU and TP2/CU) were carried out at the location of the electrical control unit on 6 October 2021.

In addition, 3 no. trial pits were carried out at the location of the electricity substation (TP1/ST – TP3/ST) on 24 October 2024.

The subsoils encountered at electrical control unit consist mainly of SILT with increasing gravel/stone content with depth due to the underling shallow weathered bedrock. Depth to bedrock at electrical control unit ranged from 0.5m to 1m.

The subsoils encountered at the electricity substation comprise a layer of SILT above gravelly CLAY. Bedrock was not encountered at the substation site at the maximum trial pit depth of 2.5m.

No ground stability issues were identified by the trial pit investigation and all subsoils were found to be firm to very firm and cohesive which is generally typical of shale, sandstone and limestone tills.

A walkover survey of the off-road sections of the underground electricity line confirmed the presence of mineral soils/subsoils and generally firm under foot ground conditions.

#### 3.4 Hydrological Environment

On a regional scale, the electricity substation, electrical control unit and electricity line are located entirely within the River Barrow surface water catchment within Hydrometric Area 14. The River Barrow flows approximately 3.5km to the east of the electricity substation site.



On a more local scale, the substation is located in the Barrow\_SC\_120 sub-catchment and within the Moanmore\_010 river waterbody sub-basin (Moanmore Stream catchment).

The electrical control unit is also mapped within the Barrow\_SC\_120 sub-catchment, whilst being situated more locally in the Monefelim\_010 river sub-basin (Monefelim River catchment).

The majority of the electricity line is also located in the Barrow\_SC\_120 sub-catchment with the exception of 1.3km which is located in the Barrow\_SC\_110 sub-catchment and more locally within the Old Leighlin Stream\_010 river waterbody sub-basin (Old Leighlin Stream catchment).

In all, the electricity line passes through 4 no. sub-basins; the Monefelim\_010 (c. 1.4km), Monefelim\_030/Paulstown Stream (c. 2.1km), Old Leighlin Stream\_010 (c. 1.3km) and Moanmore\_010 (c. 4.0km).

#### 4.0 General Spoil Management Proposals

The following are a suite of general measures which will be adhered to in the management of excavated material:-

- Excavated material will be re-used on-site for reinstatement and landscaping insofar as possible;
- Excavated material will be stored, separately, according to its characteristics (e.g. topsoil shall not be contaminated by subsoil or rock);
- Excavated subsoil shall be prioritised for the reinstatement of infrastructure (e.g. temporary construction compound, access tracks, electricity line trenches);
- Excavated topsoil shall be prioritised for final landscaping measures (e.g. ground profiling/grading, finishing of spoil deposition areas, finishing of electricity line trenches within private lands, etc.);
- Road pavement material, or other unsuitable material, shall not be used for reinstatement and shall be removed from site and disposed of at an approved waste management facility;
- Where excavated material is to be re-used (for reinstatement or landscaping), it shall be side-cast and stored temporarily in an appropriate manner. Where excess material arises which will not be re-used at the excavation location, it shall be transported to the spoil deposition areas for permanent storage;
- Temporary storage locations shall be appropriately sited to avoid any smothering of important habitats or risk of sediment discharge to watercourses;
- Temporary storage locations will be carefully selected to avoid any ground instability risks;
- The temporary storage locations will be regularly inspected by the EM; and
- Reinstatement/landscaping works will commence as soon as practicable following the completion of individual work streams thus allowing for the timely management of material and early commencement of re-vegetation thus reducing the likelihood of soil erosion or release of silt/sediment.

#### 5.0 Estimated Excavation Quantities

On the basis of site investigations undertaken at the project site and the completion of the preliminary project (civil/electrical) design process; estimated volumes of material likely to be excavated during construction have been identified. The project will, should planning permission be granted, be subject to a further detailed design process where the volume of material to be excavated will be further refined.



Accordingly, it is important to highlight that the volumes set out below are estimates based on the design process completed to date, the findings of the site investigations, and past experience of similar developments.

| Project Element                                                                                                 | Volume of<br>Material to be<br>Excavated (m³) | Volume of<br>Material to be<br>utilised for<br>reinstatement/<br>landscaping (m <sup>3</sup> ) | Volume of<br>Material to be<br>disposed of in<br>deposition area<br>(m <sup>3</sup> ) | Volume to be<br>disposed of off-<br>site (m <sup>3</sup> ) |
|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------|
| Electricity<br>Substation (incl.<br>substation<br>compound, access<br>track, site entrance,<br>interface masts) | 7,965                                         | 200                                                                                            | 7,755                                                                                 | 10                                                         |
| Temporary<br>Construction<br>Compound                                                                           | 685                                           | 685                                                                                            | 0                                                                                     | 0                                                          |
| Underground<br>Electricity Line                                                                                 | 17,330                                        | 14,045                                                                                         | 2,630                                                                                 | 655                                                        |
| Electrical Control<br>Unit (incl.<br>compound, access<br>track and site<br>entrance)                            | 950                                           | 100                                                                                            | 8501                                                                                  | 0                                                          |

#### 5.1 Spoil Generation & Management

#### Table 1: Spoil Generation & Management

#### 6.0 Use of Excavated Material

As outlined above, there are a number of possible uses for excavated material which has no further purpose in the construction process.

#### 6.1 Landscaping/Reinstatement of Infrastructure

Excavated subsoil and topsoil will, in the first instance, be utilised for the reinstatement of infrastructure including access track edges, electricity substation compound, electrical control unit compound, electricity line trench reinstatement and reinstatement of the temporary construction compound following its decommissioning. Once again, this will ensure that material is, insofar as is practicable, be reinstated at or close to its source location. Following the placement of subsoil, a layer of topsoil will be spread across the affect area, graded to match the surrounding ground profile, and re-seeded or allowed to vegetate naturally.

# 6.2 Permanent Storage

Where excess material is generated at the electricity substation site or along the route of the underground electricity line which cannot be utilised for reinstatement or landscaping purposes, it is proposed to develop 2 no. dedicated spoil deposition areas immediately northeast of the electricity substation where excess material will be stored permanently. It is estimated that c. 10,385m<sup>3</sup> of excess material (topsoil and subsoil) will be stored in the deposition areas. The locations of the deposition areas

<sup>&</sup>lt;sup>1</sup> It should be noted that due to the proximity of the location of the electrical control unit to the permitted White Hill Wind Farm, excess spoil will be deposited at spoil deposition areas permitted under An Bord Pleanála Reference ABP-315365-22)



were selected due to the general absence of environmental constraints, available separation distances to watercourses, generally flat or gently sloping gradient and close proximity thus avoiding traffic movements on the public road network.

Spoil will be transported to the deposition areas where it will be placed in layers in accordance with best-practice methods. The deposition areas will have a height of 3.5m. Appropriate drainage management measures will be implemented to ensure that the deposited spoil does not become waterlogged. Following the completion of construction, the vegetative topsoil layer which was removed to accommodate the deposition areas will be reinstated over the spoil. Alternatively, the deposition areas may be covered with topsoil and allowed to vegetate. Works at the spoil deposition areas will be monitored, on a weekly basis during the construction phase and monthly for a 6-month period thereafter, by an appropriately qualified geotechnical engineer.

During the construction phase, material will be generated from the excavation of the underground electricity line trench. In total, it is estimated that c. 17,330m<sup>3</sup> will be excavated comprising topsoil, subsoil, rock and road pavement material. Approximately 14,045m<sup>3</sup> of this material will be reused in the backfilling and reinstatement of the electricity line trench, while 2,630m<sup>3</sup> will be stored at the spoil deposition areas. Due to the potential for soil contamination, all road pavement material (tar & chips, etc.) will be disposed of at an approved waste facility.

# 6.3 Disposal Off-Site

Any spoil generated which is unsuitable for reinstatement or landscaping purposes or for storage within the deposition areas shall be removed from site and disposed of at a licensed waste disposal facility. It is estimated that 665m<sup>3</sup> of such material will be transported off site.

# 7.0 Conclusion

This SMP has been prepared to detail the appropriate management of material excavated during the construction of the White Hill Wind Farm Electricity Substation & Electricity Line. Overall, it is assessed that there is sufficient capacity within the project site to accommodate all excavated material through re-use, reinstatement and permanent storage such that no significant volume of material will be transported offsite.

This is a live document and will be updated by the appointed contractor prior to the commencement of development. Prior to the commencement of construction, the updated SMP will be reviewed by the EM to confirm the appropriateness of the measures set out therein.

Annex 4 –

Surface Water Management Plan





White Hill Wind Farm Electricity Substation & Electricity Line

# Planning-Stage Construction & Environmental Management Plan

Surface Water Management Plan

White Hill Wind Limited

Galetech Energy Services Clondargan, Stradone, Co. Cavan. Ireland Telephone +353 (0)49 555 5050 www.galetechenergyservices.com



# Contents

| 1.0 | 0 Introduction |                                                                                                                                               |    |
|-----|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----|
|     | 1.1            | Purpose of this Report                                                                                                                        | 1  |
|     | 1.2            | Reference Documents                                                                                                                           | 1  |
| 2.0 | Dese           | cription of the Project                                                                                                                       | 2  |
| 3.0 | Dese           | cription of Baseline Environment                                                                                                              | 2  |
|     | 3.1            | Site Location                                                                                                                                 | 2  |
|     | 3.2            | Topography                                                                                                                                    | 3  |
|     | 3.3            | Hydrological Environment                                                                                                                      |    |
|     | 3.4            | Geological Environment                                                                                                                        | 3  |
|     | 3.5            | Flood Risk Assessment                                                                                                                         | 4  |
|     | 3.6            | Nature Conservation Sites                                                                                                                     | 5  |
| 4.0 | Drai           | nage System                                                                                                                                   | 6  |
|     | 4.1            | Sustainable Drainage System                                                                                                                   | 6  |
|     | 4.2            | Design Measures                                                                                                                               | 9  |
| 5.0 | Surfo          | ace & Ground Water Control Measures1                                                                                                          | 2  |
|     | 5.1            | Earthworks (Removal of Vegetation Cover, Excavations, Trenching and Stock Piling) Resulting in Suspended Solids Entrainment in Surface Water) | 4  |
|     | 5.2            | Excavation Dewatering and Effects on Surface Water Quality                                                                                    | 6  |
|     | 5.3            | Release of Hydrocarbons during Construction and Storage1                                                                                      | 7  |
|     | 5.4            | Groundwater and Surface Water Contamination from Wastewater<br>Disposal                                                                       | 7  |
|     | 5.5            | Release of Cement-Based Products1                                                                                                             | 7  |
|     | 5.6            | Morphological Changes to Surface Watercourses & Drainage Patterns 1                                                                           | 8  |
|     | 5.7            | Effects on Water Supplies                                                                                                                     | 20 |
| 6.0 | Conclusion     |                                                                                                                                               | 20 |





# 1.0 Introduction

Galetech Energy Services (GES), on behalf of White Hill Wind Limited, has prepared this Surface Water Management Plan (SWMP) for the construction of the White Hill Wind Farm Electricity Substation & Electricity Line ('the project').

## 1.1 Purpose of this Report

This SWMP provides the framework for water management at the project site for contractors and incorporates the measures set out in the various environmental assessment documents associated with the project. The purpose of this report is to detail the practical implementation of these measures such that the construction of the project does not have an adverse effect on water quality.

This is a live document and will be updated by the appointed contractor prior to the commencement of development. Prior to the commencement of construction, the updated SWMP will be reviewed by the Environmental Manager (EM) and Ecological Clerk of Works (EcoW), as necessary, to confirm the appropriateness of the measures set out therein.

This SWMP aims to:-

- Describe environmental sensitives of the site and any applicable buffer zones;
- Describe how the system will operate to minimise modification and disruption to the existing site hydrology;
- Outline the proposed maintenance regime; and
- Outline the proposed drainage management post-construction.

#### 1.2 Reference Documents

The production of this SWMP has been supported by best practice manuals and will be accounted for in the further development of the appointed contractor's detailed CEMP.

Other documents have been used to develop this SWMP; including a Planning-Stage Construction & Environmental Management Plan, Spoil Management Plan, Waste Management Plan, and Environmental & Emergency Response Plan.

#### 1.2.1 Legislative Background

This report has been prepared in accordance with the following legislation:-

- S.I. 10 of 1972 Dangerous Substances Act, 1972, as amended;
- S.I. No. 293 of 1988 Quality of Salmon Water Regulations;
- S.I. No. 249 of 1989 Quality of Surface Water Intended for Abstraction (Drinking Water);
- S.I. No. 94 of 1997 European Communities (Natural Habitats) Regulations;
- S.I. No. 41 of 1999 Protection of Groundwater Regulations;
- Water Framework Directive (2000/60/EC);
- S. I. No. 600 of 2001 Planning and Development Regulations 2001, as amended;
- S.I. No. 722 of 2003 European Communities (Water Policy) Regulations;
- S.I. 547 of 2008 European Communities (Environmental Liability) Regulations;
- S.I. No. 272 of 2009 European Communities Environmental Objectives (Surface Waters) Regulations;
- S.I. No. 9 of 2010 European Communities Environmental Objectives (Groundwater) Regulations 2010; and



• S.I. No. 350 of 2014 European Union (Water Policy) Regulations 2014.

# 1.2.2 Construction Industry Research & Information Association (CIRIA) Manuals

- CIRIA (Construction Industry Research & Information Association) Report C502 Environmental Good Practice on Site;
- CIRIA 521 Sustainable Urban Drainage Systems; Design Manual for Scotland and Northern Ireland;
- CIRIA Report C532 Control of Water Pollution from Construction Sites;
- CIRIA Report C648 Control of Pollution from Linear Construction Project Technical Guidance;
- CIRIA Handbook C650 Environmental good practice on site;
- CIRIA Handbook C651 Environmental good practice on site checklist;
- CIRIA Report C609 SuDS hydraulic, structural & water quality advice;
- CIRIA Report C697 The SuDS Manual; and
- Guidelines on Protection of Fisheries during Construction Work in and Adjacent to Water (Inland Fisheries Ireland, January 2016).

## 2.0 Description of the Project

White Hill Wind Limited intends to construct the project which will consist of:-

- A 110kV 'loop-in/loop-out' electricity substation;
- Approximately 320 metres (m) of 110kV underground electricity line between the electricity substation and the Kellis-Kilkenny overhead transmission line and the provision of 2 no. interface masts;
- An electrical control unit at the permitted White Hill Wind Farm site;
- Approximately 8.8km of underground electricity line between the electricity substation and the electrical control unit; and,
- All associated and ancillary site development, access, excavation, construction, landscaping and reinstatement works, including provision of site drainage infrastructure.

The project site traverses the administrative boundary between counties Kilkenny and Carlow; with the electricity substation and c. 3.3km of the underground electricity line located in County Kilkenny and c. 5.5km of the underground electricity line and the electrical control unit located in County Carlow. Electrical equipment suppliers, construction material suppliers and candidate quarries which may supply aggregates are located nationwide.

In addition to the reference documents listed in **Section 1.2**, various environmental reports have been prepared for the development including:-

- Environmental Impact Assessment Report (Galetech Energy Services);
- Biodiversity chapter (SLR Consulting);
- Land & Soil chapter (Hydro Environmental Services);
- Water chapter (Hydro Environmental Services); and
- Natura Impact Statement (SLR Consulting).

#### 3.0 Description of Baseline Environment

#### 3.1 Site Location

The project will be located approximately 11km northeast of Kilkenny City, c. 15km southwest of Carlow Town, c. 3km west of Muine Bheag (Bagenalstown) and c. 1km north of Paulstown. The electricity substation will be located within the townland of



Shankill, County Kilkenny; Shankill and Ballygorteen, County Kilkenny; and Annagar, Lackan and Baunreagh, County Carlow. The electrical control unit will be located within the townland of Baunreagh, County Carlow. The underground electricity line will, from the electricity substation, be located within private lands and within the carriageways of locally-classed public roads.

The project site is located at the southern extent of the Castlecomer Plateau. The Castlecomer Plateau is an elevated plateau located in south County Laois, northwest County Carlow and northeast County Kilkenny. The Castlecomer Plateau is characterised by undulating hills and steep escarpments at its fringes. Dissecting the lowlands on either side of the plateau are the Barrow and Nore rivers, which lie to the east and west respectively. The lowlands are a mixture of pasture and tillage with fields typically bordered by mature broadleaf tree lines and hedgerows. Agricultural land uses extend into the upland areas in the form of more marginal grazing with scrubby hedgerow field boundaries. Extensive commercial conifer plantations emerge on higher slopes throughout the Castlecomer Plateau.

# 3.2 Topography

The project site, and surrounding topography, are typical of this region and comprise an undulating landscape with the ground elevation rising considerably from the substation along the route of the underground electricity line to the electrical control unit and the permitted White Hill Wind Farm site. Ground elevations at the electricity substation range between 68 metres (m) and 73m above ordnance datum (AOD). Ground elevations along the electricity cable route generally range between 68m and 310m. To the south and east of the project site, the terrain is gently undulating and generally trends towards the River Barrow located c. 3km to the east.

# 3.3 Hydrological Environment

On a regional scale, the electricity substation, electrical control unit and electricity line are located entirely within the River Barrow surface water catchment within Hydrometric Area 14. The River Barrow flows approximately 3.5km to the east of the electricity substation site.

On a more local scale, the substation is located in the Barrow\_SC\_120 sub-catchment and within the Moanmore\_010 river waterbody sub-basin (Moanmore Stream catchment).

The electrical control unit is also mapped within the Barrow\_SC\_120 sub-catchment, whilst being situated more locally in the Monefelim\_010 river sub-basin (Monefelim River catchment).

The majority of the electricity line is also located in the Barrow\_SC\_120 sub-catchment with the exception of 1.3km which is located in the Barrow\_SC\_110 sub-catchment and more locally within the Old Leighlin Stream\_010 river waterbody sub-basin (Old Leighlin Stream catchment).

In all, the electricity line passes through 4 no. sub-basins; the Monefelim\_010 (c. 1.4km), Monefelim\_030/Paulstown Stream (c. 2.1km), Old Leighlin Stream\_010 (c. 1.3km) and Moanmore\_010 (c. 4.0km).

# 3.4 Geological Environment

Based on the GSI/Teagasc soils mapping (<u>www.epa.ie</u>), the location of the electricity substation is overlain by poorly drained, mainly basic mineral soils (BminPD). The



location of the electrical control unit is mapped as shallow acid poorly drained mineral soils (AminSP).

The mapped soil types along the underground electricity line chiefly consist of a mixture of acidic natured soils such as shallow well drained mineral soils (AminSW), poorly drained mineral soils (AminPD), deep well drained mineral soils (AminDW), Shallow, rocky, peaty/non-peaty mineral complexes (AminSRPT) and poorly drained mineral soils (AminSP). Alluvium soils are mapped briefly (c. 400m section) along route where the Shankill Stream nears the local road towards the southern section of the route.

Till derived from limestones (TLs) is mapped to underly the electricity substation. There is little subsoil coverage in the more upland areas of the project site underlying the electrical control unit, as bedrock outcrop/subcrop (Rck) is mapped here by the GSI.

Similarly, there is little subsoil coverage mapped to underly much of the electricity line route as bedrock outcrop/subcrop (Rck) is dominant throughout. Any subsoils that are mapped along the route are chiefly Till derived from Namurian sandstones and shales (TNSSs). Alluvium subsoils are also mapped briefly along the southern section of the route near the Shankill Stream. As the route progresses nearer to the electricity substation, the subsoils are mapped as Till derived from limestones (TLs).

As part of the EIAR for the White Hill Wind Farm, 2 no. trial pits (referred to herein as TP1/CU and TP2/CU) were carried out at the location of the electrical control unit on 6 October 2021.

In addition, 3 no. trial pits were carried out at the location of the electricity substation (TP1/ST – TP3/ST) on 24 October 2024.

The subsoils encountered at electrical control unit consist mainly of SILT with increasing gravel/stone content with depth due to the underling shallow weathered bedrock. Depth to bedrock at electrical control unit ranged from 0.5m to 1m.

The subsoils encountered at the electricity substation comprise a layer of SILT above gravelly CLAY. Bedrock was not encountered at the substation site at the maximum trial pit depth of 2.5m.

No ground stability issues were identified by the trial pit investigation and all subsoils were found to be firm to very firm and cohesive which is generally typical of shale, sandstone and limestone tills.

A walkover survey of the off-road sections of the underground electricity line confirmed the presence of mineral soils/subsoils and generally firm under foot ground conditions.

#### 3.5 Flood Risk Assessment

OPW's Past Flood Events Maps, the National Indicative Fluvial Mapping (NIFM), CFRAM River Flood Extents, historical OSI mapping (i.e. 6" and 25" base maps) and the GSI Surface Water and Groundwater Flood Maps were consulted. These flood maps are available to view at <u>Flood Maps - Floodinfo.ie</u>.

There are no areas on the historical OSI 6" or 25" mapping in the project site that are identified as "Liable to Floods".

No recurring flood incidents were identified near the electricity substation or the electrical control unit. A recurring flood event is however mapped along the electricity line route at the L7117 local road in the townland of Lacken (Flood ID:



2959). The road is noted to be periodically impassable within the Bagenalstown Area Engineer Meeting Minutes.

There is no CFRAM River Flood Extents mapping available for the project site. The nearest available CFRAM mapping is found along the main channel of the River Barrow c. 3.5km to the east of the project site.

There is also no National Indicative Fluvial Mapping available for the immediate vicinity of the project. NIFM river flood zones are mapped along the Moanmore Stream approximately 1.8km east and downstream of the electricity substation location, before its confluence with the River Barrow.

NIFM flood zones are also mapped along the Monefelim River and Paulstown Stream, however these are at significant downstream distances from the project. For example, river flood zones are mapped along the Monefelim\_010 approximately 2.6km south and downstream of the electrical control unit.

Additionally, flood zones are mapped along the Monefelim\_030 approximately 2.7km southeast and downstream of where the electricity line crosses the Paulstown Stream (EPA Code: 14P06).

The GSI's Winter 2015/2016 Surface Water Flood Map shows surface water flood extents for this winter's flood event. This flood event is recognised as being the largest flood event on record in many areas. The flood map for this event does not record any flood zones in the area of the project site. The nearest mapped surface water flood zones are mapped along the main channel of the River Barrow further east and downstream of the project site.

No modelled or historic groundwater flooding is mapped in the vicinity of the project site or surrounding lands.

There are no areas within the project site or downstream of it mapped as 'Benefiting Lands'. Benefiting lands are defined as a dataset prepared by the OPW identifying land(s) that might benefit from the implementation of Arterial (Major) Drainage Schemes (under the Arterial Drainage Act 1945) and indicating areas of land subject to flooding or poor drainage.

A walkover of the project site was undertaken on 24 October 2024 during which it was surveyed for any signs or anecdotal evidence of flooding. No such signs were noted.

#### 3.6 Nature Conservation Sites

Within the Republic of Ireland, designated sites include Natural Heritage Areas (NHAs), proposed Natural Heritage Areas (pNHAs), Special Areas of Conservation (SAC) and Special Protection Areas (SPAs).

The project site is not located within any designated conservation site.

All of the river waterbodies that drain the project site flow into the River Barrow and River Nore SAC (Site Code: 002162) to the southeast.

At its closest point, this designated site is located approximately 2.7km to the east (as crow flies) and downstream of the substation location.

The Whitehall Quarries pNHA (Site Code: 000855) is situated c. 500m to the southwest of the electricity line at its nearest point and is c. 1.7km northwest of the substation. There is no hydrological connectivity to this designated site.



## 4.0 Drainage System

#### 4.1 Sustainable Drainage System

Surface water is a valuable resource and this should be reflected in that way it is managed. The appropriate management of surface water should be considered at the early stages of the project design process. It is important, particularly on large developments such as the subject project, that the management of surface water is managed in a fashion will prevents significant alterations to the existing hydrological regime whilst ensuring the appropriate drainage of the proposed site.

The project has been designed to implement a Sustainable Drainage System (SuDS) which seeks to:-

- Minimise any change to the surface water and groundwater conditions within the site;
- Avoid sensitive areas where possible by employing hydrological constraints (i.e. buffer zones);
- Replicate the natural drainage of the site;
- Minimise sediment loads in the runoff, with particular attention being given to the construction phase of the project;
- Maintain runoff rates and volumes at Greenfield rates for a range of storm events (to be incorporated into final detailed design); and,
- Avoid high flow velocities internally within new drain networks and at outfall locations to prevent erosion.

The purpose of a SuDS is:-

- To provide sufficient detail to ensure that water pollution will not occur as a result of construction and operational activities at the site and to minimise the risk of any such occurrence;
- To regulate the rate of surface water run-off downslope to prevent scouring and to encourage settlement of sediment locally; and
- To minimise the quantity of sediment laden stormwater and resulting settlement pond sizes by separating 'clean' water from the 'dirty' development runoff.

#### 4.1.1 SuDS Design

The overarching objective of the SuDS design is to ensure that all surface water runoff is comprehensively attenuated such that no silt or sediment laden waters or deleterious material is discharged into the local drainage system. While the SuDS is, overall, an amalgamation of a suite of drainage infrastructure; the objectives are straightforward. In summary:-

- All surface water runoff will be directed to specially constructed swales surrounding all areas of ground proposed to be disturbed;
- The swales will direct runoff into stilling ponds (silt traps) where silt/sediment will be allowed to settle; and
- Following the settlement of silt/sediment, clean water will be discharged indirectly to the local drainage network via buffered outfalls thus ensuring that no scouring/erosion occurs.

The design criteria for the SuDS is as follows:-

• To minimise alterations to the ambient site hydrology and hydrogeology;



- To provide settlement and treatment controls as close to the site footprint as possible and to replicate, where possible, the existing hydrological environment of the site;
- To minimise sediment loads resulting from the development runoff during the construction phase;
- To preserve greenfield runoff rates and volumes;
- To strictly control all surface water runoff such that no silt or other pollutants shall enter watercourses and that no artificially elevated levels of downstream siltation or no plumes of silt arise when substratum is disturbed;
- To provide appropriate retention times such that and no flooding will occur on local roads in the vicinity of the project site which may cause a traffic hazard;
- To provide stilling ponds (comprising primary and secondary ponds) to encourage sedimentation and storm water runoff settlement;
- To provide lagoon-type settlement ponds which follow a design outlined by Altmuller and Dettmer (2006). The tertiary treatment system of the lagoon-type settlement ponds will absorb the fine particles, which may not settle in the primary and secondary settlement ponds. These ponds are to be vegetated so as to perform the role of plant filtration best described on Page 7 of the Altmuller and Dettmer document<sup>1</sup> (see Annex 1);
- To reduce stormwater runoff velocities throughout the site to prevent scouring and encourage settlement of sediment locally;
- To manage erosion and allow for the effective revegetation of bare surfaces;
- To control water within the site and allow for the discharge of runoff from the site within the limits prescribed in the Freshwater Pearl Mussel and Salmonid Regulations;
- To ensure that oils, fuels and other contaminants are stored appropriately and bunded to prevent any discharge of such materials. The temporary construction compound, where such oils and fuels will be stored, shall incorporate an oil/petrol interceptor within its drainage system. Similarly, an oil/petrol interceptor shall be installed within the permanent drainage system for the electricity substation;
- Additional drainage measures will only be added as necessary. The dimensions of these features will avoid intercepting large volumes of water;
- Storm water runoff from access tracks will be managed via filter drains consisting of open land drains, swales and stilling ponds/lagoon-type settlement ponds. Access tracks will crossfall downslope to mimic the natural drainage patterns of the site.
- Swale/stilling pond vegetation used will be appropriate to the local area;
- Temporary erosion protection together with silt fences may be required, posconstruction, until vegetation becomes established (coir matting or similar);
- Access tracks and areas of hardstandings will be constructed from aggregate and will not be surfaced with bitumen materials, thus helping to reduce runoff volumes. Therefore a reduced runoff coefficient of 50% is applicable;
- An additional 20% will be included to take account for global warming;
- A large portion of the hardstanding construction will be of single sized stone therefore the pore spacing in the hardstanding and road will also act to store and attenuate water;

<sup>&</sup>lt;sup>1</sup> Altmüller R. & Dettmer, R. (2006) Successful species protection measures for the Freshwater Pearl Mussel (Margaritifera margaritifera) through the reduction of unnaturally high loading of silt and sand in running waters – Experiences within the scope of the Lutterproject.



- Up-gradient swales will be primarily used to attenuate water and to encourage discharge into the ground locally;
- Outflow points will be taken from the swales into the existing onsite drainage channels. Silt fences will be maintained at the interface between the proposed and existing drainage channels for the duration of the construction phase;
- Stormwater runoff within the swale will also be treated through the provision of small silt fences or check dams, within a range depending on local slope of swale;
- The stone used for the construction of the check dams will be washed graded stone with a size range between approximately 5mm and 40mm;
- Swales will provide a flow route in extreme events to carry water to the existing surface water channels across site. It will be necessary to increase the cross sectional area of the swales further downstream of the footprint as larger volumes of stormwater are conveyed;
- Discharging directly back into the surrounding area will assist in maintaining the hydrological characteristics of the site;
- Vegetation will be reinstated on slopes as early as possible;
- Under track drainage will be provided with associated sumps and silt fences. The under track drainage will provide a means for flows to pass from a swale on the uphill side of the slope to the downhill side of the slope.
- A sump may be required to collect dewaterings from excavations; water will subsequently be pumped into the stilling pond system and allowed to settle prior to discharge;
- All swales (for clean and dirty water) and ponds will be kept as shallow as possible so that they do not pose any health and safety risk to plant or personnel;
- Field drains/streams will be piped directly under the track through appropriately sized drainage pipes;
- Prior to construction, the Office of Public Works (OPW) will be consulted with regard to a Section 50 licence for the installation of a culvert over the unnamed stream north of the electricity substation. The design of the culvert will follow guidance from Inland Fisheries Ireland;
- Appropriate site management measures will be taken such that runoff from the construction site is not contaminated by fuel or lubricant spillages;
- There will be no discharge of sewage effluent or contaminated drainage into any watercourse system or ditch; and
- The drainage system will be monitored regularly during the construction phase for effectiveness, and cleaned or unblocked if necessary.

# 4.1.2 SuDS Design Philosophy

The SuDS design principles are as follows:-

| Minimise | $\rightarrow$ | Intercept | $\rightarrow$ | Treat | $\rightarrow$ | Disperse | $\rightarrow$ | Dilute |  |
|----------|---------------|-----------|---------------|-------|---------------|----------|---------------|--------|--|
|          |               |           |               |       |               |          |               |        |  |

#### Minimise

The main principle of this SuDS design is to minimise the volume of 'dirty' water requiring treatment through means of informed, integrated and sustainable drainage design. This is achieved by keeping 'clean' water clean by interception and separation, and by collecting the 'dirty' water and treating it by removing the suspended sediments. The resultant outflow is dispersed across vegetation and will



become diluted through contact with the clean water runoff before entering the natural drainage system.

#### Intercept

The key silt/sediment control measure is the separation of construction runoff from the clean water runoff that arises in the undisturbed areas of the project site and surrounding lands. This significantly reduces the volume, and velocity, of dirty water that the control measures are required to manage. To achieve separation, clean water infiltration interception drains are positioned on the upslope and dirty water swales/drains positioned on the downslope, with site surfaces sloped towards dirty water swales/drains. Where required, the remainder of this clean water will be regularly piped under both the access tracks and dirty water swales/drains to prevent contamination. This process allow for the mimicking the paths which clean water would have taken in the absence of the project.

#### Treat, Disperse, & Dilute

'Dirty water' swales/drains collect all incident rainwater that falls on the development infrastructure and drain into the stilling ponds and lagoon-type settlement ponds. Following a period of attenuation, during which time all suspended solids will have 'fallen', the treated water is dispersed across vegetation (through buffered outfalls) to further filter the discharge. Dispersal in this manner has the effect of allowing any remaining small particle sizes to be taken up by the vegetation.

#### 4.2 Design Measures

This SuDS adopts a design for the drainage of the site. The following elements in series are proposed:-

- Areas of ground to be disturbed should be kept to the minimum required;
- Open swales for development run-off collection and treatment;
- Infiltration Interception Drains for upslope 'clean' water collection and dispersion;
- Filtration Check Dams will be installed to reduce velocities along sections of road which run perpendicular to contours;
- Stilling ponds and lagoon-type settlement ponds will control and store development runoff to encourage settlement prior to discharge, at greenfield runoff rates, to eliminate any risk to Freshwater Pearl Mussel downstream of the project; and
- Disturbed Sediment Entrainment Mats (SEDIMATS) or other temporary surface water control measures will be installed in drainage features along the route of the underground electricity line to provide a further level of protection in relation to silt release.

These measures will provide a comprehensive surface water management train that will avoid any adverse effect on the hydrology of the site and downstream water quality during the construction phase of the project.

#### 4.2.1 Infiltration Interceptor Drains

Drainage management will ensure that natural runoff is not permitted to mix with construction runoff from sources such as excavation dewatering or access track runoff. The SuDS design will ensure that infiltration interceptor drains are installed upslope of infrastructure, to intercept and divert clean surface water runoff, prior to it



coming in contact with areas of excavation. The contractor will ensure that natural runoff infiltration interceptor drains are installed ahead of earthworks being undertaken.

The purpose of interceptor drainage is to collect clean run-off water on the upstream side of new infrastructure and transfer it such that it can discharge to the downstream side of infrastructure without having to interact with new infrastructure/excavations where it could potentially pick up fine particles.

This will reduce the flow of natural runoff onto any exposed areas of rock and soil, thereby reducing the volume of silt laden runoff capable of being generated at the project site. Natural runoff water, upslope of infrastructure, will be collected in infiltration interceptor drains and be directed away from the earthworks etc. In certain areas, runoff will be passed through sub-surface clean water culverts (e.g. below access tracks or hardstandings) and will be kept separate to drainage provided for track runoff. The clean water runoff will be discharged downstream of works location and returned to the natural drainage network.

Temporary silt/sediment prevention and erosion protection measures will be provided in all drainage channels installed in order to mitigate the possibility of erosion and transport of sediment from newly excavated channels which will be formed as part of the construction runoff drainage provisions. All drainage is to be dispersed over vegetated ground as a further filtration method.

The frequency of outflow points will be designed to avoid collection and interception of large catchments creating significant point flows.

#### 4.2.2 Swales

Swales will be utilised to capture surface runoff from excavated areas. Swales will direct the runoff to the stilling ponds and lagoon-type settlement ponds for further treatment and attenuation.

# 4.2.3 Filtration Check Dams

Check dams (flow barriers or dams constructed across the drainage channel) will be installed at regular intervals within clean water drains and dirty water swales in order to reduce erosion and allow for greater flow control. Check dams allow for a reduction in the velocity of water and therefore allow settlement of coarser sediment particles as well as silt at low flow conditions. Reduction in flow velocity will also prevent erosion of the drainage channel itself.

The number and location of check dams will be dependent on the slope, flow and volume of water, although the following general rules will be applied:

- The maximum spacing between check dams should be such that the toe of the upstream dam is at the same elevation as the top of the downstream dam;
- The centre of the check dam should be at least 0.2m lower than the outside edges;
- Side slopes should be 1:2 or less;
- Check dams should be keyed at least 0.1m into the drainage channel bottom in order to prevent the dam washing out; and
- Check dams will be maintained and monitored on a regular basis. Sediment should be removed before it reaches one half the original dam height.



# 4.2.4 Stilling Ponds

Runoff from large areas of hardstanding; including electricity substation compound, electrical control unit compound and temporary construction compound; will be attenuated to mimic natural runoff patterns. To capture runoff generated within the project site, swales (see **Section 4.2.2**) will be utilised to attenuate water and to direct 'dirty' water to stilling ponds, where the flow velocity will reduce to allow sediment and silt to be deposited.

From the primary and secondary stilling ponds, the water will flow through a tertiary treatment system; based on a design from Altmuller and Dettmer (2006); of lagoon-type sediment ponds which will absorb the fine particles that may not settle in the primary and secondary ponds.

All swales and ponds will be kept as shallow as possible so that they pose no health and safety risk to plant or personnel. Maximum depth of standing water will be limited to 0.75m within the stilling/settlement ponds.

The stilling ponds are utilised to attenuate rain water runoff rates to that of existing green field rates. In addition, the ponds shall aid the removal of suspended solids from runoff water.

# 4.2.5 Lagoon-type Settlement Ponds

In addition to the stilling ponds, a tertiary treatment system will also be provided to absorb any fine particles that may not settle in the primary and secondary settlement ponds. From the stilling ponds, water will flow through lagoon-type settlement ponds which will be designed with a retention time of 10-days. These ponds; the design of which will be adapted to the characteristics of the project site but based on the principles of Altmuller & Dettmer; will be vegetated so as to perform the role of a 'plant filtration bed' as described at **Annex 1** (pg. 7).

The project site is located in the catchment of the specified Freshwater Pearl Mussel (FPM) populations as set out in First Schedule of the European Communities Environmental Objectives (Freshwater Pearl Mussel) Regulations 2009. Sedimentation poses a significant threat to the FPM which is the qualifying interest of the River Barrow and River Nore Special Area of Conservation (SAC). All surface water run-off shall be strictly controlled such that no silt or other pollutants enter watercourses and that no artificially elevated levels of downstream siltation or no plumes of silt arise, in accordance with the Fourth Schedule of the Regulations.

The stilling ponds and lagoon-type settlement ponds will assist as part of an overall strategy to remove any risk to FPM downstream of the project site.

Separately, it is also proposed to use Disturbed Sediment Entrainment Mats - SEDIMATS (see <u>http://www.hy-tex.co.uk/ht\_bio\_sed.html</u>). The use of these mats will provide a further level of protection in relation to silt release.

# 4.2.6 Temporary Surface Water Controls

In addition to the above, temporary surface water control measures will be implemented along the route of the underground electricity line. Due to the transient nature of works along the route, such measures will primarily comprise the installation of silt fencing downslope of the works area while straw bales will be installed within existing drainage channels.



Additionally, at the locations of horizontal directional drilling (HDD), all works will be undertaken in strict accordance with best practice methodologies with surface water measures being installed; including the installation of double silt fencing, avoidance of any refuelling activities within 100m of the streams, bunding of the Clear Bore<sup>™</sup> batching, pumping and recycling plants, spill kits being available in the event of an accidental spillage or leakage, and the provision of adequately sized skips for the temporary storage of drilling arisings and drilling flush. All such arisings and flush will be disposed of at a licensed waste management facility.

# 4.2.7 Planning-Stage Design of Surface Water Management System

A planning-stage drainage/surface water management system has been designed by Jennings O'Donovan & Partners, enclosed at **Annex 2** hereto, and includes preliminary specifications for surface water management infrastructure particularly in relation to the appropriate sizing of stilling ponds. Details of the sizing of each pond, which have been informed by Met Éireann rainfall data for the project site, are provided at **Table 1** below.

| Pond<br>Reference<br>(SP) | Development<br>Area (m²) | Length<br>(m) | Width<br>(m) | Depth<br>(m) | Overall<br>Volume<br>of Stilling<br>Pond<br>(m <sup>3</sup> ) | Settling<br>Velocity<br>m/s<br><0.0016 | Settling<br>Duration<br>Hours<br>>4hrs |
|---------------------------|--------------------------|---------------|--------------|--------------|---------------------------------------------------------------|----------------------------------------|----------------------------------------|
| 1                         | 397                      | 5             | 2.8          | 0.75         | 10.5                                                          | 0.0002                                 | 8.12                                   |
| 2                         | 720                      | 8             | 2.8          | 0.75         | 16.8                                                          | 0.0003                                 | 7.16                                   |
| 3                         | 104                      | 2             | 2.8          | 0.5          | 2.8                                                           | 0.0001                                 | 8.26                                   |
| 4                         | 414                      | 4.6           | 2.8          | 0.75         | 9.7                                                           | 0.0002                                 | 7.16                                   |
| 5                         | 308                      | 3.4           | 2.8          | 0.75         | 7.1                                                           | 0.0001                                 | 7.12                                   |
| 6                         | 866                      | 9.6           | 2.8          | 0.75         | 20.2                                                          | 0.0004                                 | 7.15                                   |
| 7                         | 1375                     | 10.7          | 4            | 0.75         | 32.1                                                          | 0.0004                                 | 7.17                                   |

#### Table 1: Planning-Stage Stilling Pond Specifications

Prior to the commencement of development, the appointed contractor; in conjunction with the project design team, EM, and ECoW; shall prepare a detailed SWMP which shall detail the precise specifications and locations of all surface water management infrastructure to be installed.

#### 5.0 Surface & Ground Water Control Measures

In the first instance, the project seeks to avoid adverse effects on all waters (surface and ground) through avoidance. In particular, the project has sought to avoid direct interactions with watercourses; through minimising the number of watercourse crossings and the implementation of a 50m buffer zone around natural watercourses. The design of the project has, where possible, sought to avoid this buffer area.

Best practice measures are also proposed to minimise effects to water quality, as follows:-.

- All site personnel will be made aware of their environmental responsibilities at the site;
- Contractors will be required to include contingency plans to deal with spillages, should they occur;
- Land disturbance will be kept to minimum and disturbed areas will be stabilised as soon as possible;



- In principle, soil excavation should be undertaken during dry periods, whenever possible;
- Site visits by a Design Engineer will be undertaken at various stages of the construction process to ensure that the SuDS scheme is being constructed and implemented appropriately; and
- In order to verify the efficacy of pollution prevention works during construction, water quality monitoring will be undertaken by a suitably qualified EM, prior to, during and post completion of construction works. This will include all watercourses within the catchment of the construction area. The monitoring will comprise visual and hydrochemistry monitoring, as described in detail in the Water Quality Monitoring Plan.

Finally, all mitigation measures proposed in the Water chapter of the EIAR will be implemented in full, as set out in the following sections.

The overarching objective of the proposed mitigation measures is to ensure that all surface water runoff is comprehensively attenuated such that no silt or sediment laden waters or deleterious material is discharged into the local drainage system. This SWMP incorporates the surface water drainage design which has been prepared for the electricity substation and electrical control unit, see **Annex 2** hereto, and incorporates the principles of Sustainable Drainage Systems (SuDS) through an arrangement of surface water drainage infrastructure.

While the SuDS, overall, is an amalgamation of a suite of drainage infrastructure; the overall philosophy is straightforward. In summary:-

- Clean water drains will be installed upslope of the works area to intercept clean surface water to prevent it becoming contaminated by silt/sediment from construction activities;
- All surface water runoff from construction areas will be directed to specially constructed downslope dirty water drains surrounding all areas of ground proposed to be disturbed (including areas for the temporary storage of material);
- The swales will direct runoff into stilling ponds and, subsequently, lagoon-type settlement ponds<sup>2</sup> where silt/sediment will be allowed to settle; and,
- Following the settlement of silt/sediment, clean water will be discharged to the local drainage network or to ground via buffered outfalls or level spreaders thus ensuring that no scouring occurs.

The suite of surface water drainage infrastructure will include *inter alia* upslope clean water drains, downslope dirty water drains, sedimats, flow attenuation and filtration check dams, stilling ponds, lagoon-type settlement ponds and buffered outfalls or level spreaders.

The design criteria implemented as part of the SuDS are as follows:-

- To minimise alterations to the ambient site hydrology and hydrogeology;
- To provide settlement and treatment controls as close to the site footprint as possible and to replicate, where possible, the existing hydrological environment of the site;

<sup>&</sup>lt;sup>2</sup> The design of the lagoon-type sediment ponds shall generally accord with the principles Altmüller R. & Dettmer, R. (2006) Successful species protection measures for the Freshwater Pearl Mussel (Margaritifera margaritifera) through the reduction of unnaturally high loading of silt and sand in running waters – Experiences within the scope of the Lutterproject.



- To minimise sediment loads resulting from the development run-off during the construction phase;
- To preserve greenfield runoff rates and volumes;
- To strictly control all surface water runoff such that no silt or other pollutants shall enter watercourses and that no artificially elevated levels of downstream siltation or no plumes of silt arise when substratum is disturbed;
- To provide settlement ponds to encourage sedimentation and storm water runoff settlement;
- To reduce stormwater runoff velocities throughout the site to prevent scouring and encourage settlement of sediment locally; and,
- To manage erosion and allow for the effective revegetation of bare surfaces.

# 5.1 Earthworks (Removal of Vegetation Cover, Excavations, Trenching and Stock Piling) Resulting in Suspended Solids Entrainment in Surface Water)

#### 5.1.1 Electricity Substation and Electrical Control Unit

The management of surface water runoff and subsequent treatment prior to release off-site will be undertaken during construction work as follows:-

- Prior to the commencement of earthworks, silt fencing will be placed downgradient of the construction areas, as required, until the full range of construction phase measures are installed;
- These will be embedded into the local soils to ensure all site water is captured and filtered;
- Clean water drains will include check dams to control flow rates and avoid erosion or scouring of the drain;
- Water from the clean drains will be discharged by a buffered outfall or level spreader at greenfield runoff rates;
- Water will be discharged from the clean drains over natural grassland or to existing agricultural drains which will provide further filtration;
- All surface water runoff from works areas, excavations, stockpiles at the electricity substation site and electrical control unit site will be intercepted by downslope drains which will also include check dams;
- These dirty water drains will direct water to stilling ponds where water for treatment and attenuation;
- From the stilling ponds, water will be discharged to lagoon-type settlement ponds for final treatment. The settlement ponds will follow a design outlined by Altmuller and Dettmer (2006);
- The treated water will then be discharged via a buffered outfall or level spreader, at greenfield rates, over natural grassland which will provide additional filtration and treatment;
- The precise design, sizing and sitting of the drainage infrastructure will be confirmed as part of the post-consent detailed design process, however the design will be reflective of predicted rainfall levels with an appropriate allowance for climate change
- Daily monitoring of the excavation/earthworks, the water treatment and pumping system and the discharge areas will be completed by a suitably qualified person during the construction phase. All necessary preventative measures will be implemented to ensure no entrained sediment, or deleterious matter will enter the main drainage channel;
- If high levels of silt or other contamination is noted in the pumped water or the treatment systems, all construction works will be stopped. No works will



recommence until the issue is resolved and the cause of the elevated source is remedied; and,

• Earthworks will take place during periods of low rainfall to reduce run-off and potential siltation of watercourses.

The construction of the site drainage system will be carried out, at the respective locations, prior to other activities being commenced. The construction of the drainage system will only be carried out during periods of, where possible, no rainfall, therefore avoiding runoff. This will avoid the risk of entrainment of suspended sediment in surface water runoff, and transport via this pathway to surface watercourses. Construction of the drainage system during this period will also ensure that attenuation features associated with the drainage system will be in place and functional for all subsequent construction works.

## 5.1.2 Electricity Line

The majority of the underground electricity line is in excess of 50m from any nearby watercourse with the exception of the 5 no. watercourse crossings.

No in-stream works are required at the crossing locations as HDD is proposed, however due to the proximity of the watercourses to the construction works, there is a risk of surface water quality effects during trench excavation work.

Mitigation measures which are outlined below will be implemented to ensure that silt laden or contaminated surface water runoff from the trenching work does not discharge directly to the water:-

- All existing dry drains that intercept the works area will be temporarily blocked down-gradient of the works using temporary check dams/silt traps (e.g. straw bales);
- Clean water diversion drains will be installed upgradient of the works areas, as required;
- Check dams/silt fence arrangements (silt traps or straw bales) will be placed in all existing drains that have surface water flows and also along existing roadside drains; and,
- A double silt fence perimeter will be placed down-slope of works areas that are located inside the watercourse 50m buffer zones such as at watercourse crossing locations.

# 5.1.3 Pre-emptive Site Drainage Management

The works programme for the construction stage of the project will also take account of weather forecasts, and predicted rainfall in particular. Large excavations and movements of soil/subsoil or vegetation stripping will be suspended or scaled back if prolonged or intense rain is forecast. The extent to which works will be scaled back or suspended will relate directly to the amount of rainfall forecast.

The following forecasting systems are available and will be used on a daily basis at the site to direct proposed construction activities:-

- General Forecasts: Available on a national, regional and county level from the Met Eireann website (www.met.ie/forecasts). These provide general information on weather patterns including rainfall, wind speed and direction but do not provide any quantitative rainfall estimates;
- Meteo Alarm: Alerts to the possible occurrence of severe weather for the next 2days. Less useful than general forecasts as only available on a provincial scale;



- 3-hour Rainfall Maps: Forecast quantitative rainfall amounts for the next 3-hours but does not account for possible heavy localised events;
- Rainfall Radar Images: Images covering the entire country are freely available from the Met Eireann website (www.met.ie/latest/rainfall\_radar.asp). The images are a composite of radar data from Shannon and Dublin airports and give a picture of current rainfall extent and intensity. Images show a quantitative measure of recent rainfall. A 3-hour record is given and is updated every 15minutes. Radar images are not predictive; and,
- Consultancy Service: Met Eireann provide a 24-hour telephone consultancy service. The forecaster will provide interpretation of weather data and give the best available forecast for the area of interest.

The use of safe threshold rainfall values will allow work to be safely controlled (from a water quality perspective) in the event of an impending high rainfall intensity event.

Works will be suspended if forecasting suggests either of the following is likely to occur:-

- >10 mm/hr (i.e. high intensity local rainfall events);
- >25 mm in a 24-hour period (heavy frontal rainfall lasting most of the day); or,
- >half monthly average rainfall in any 7 days.

Prior to works being suspended, the following control measures should be completed:-

- Secure all open excavations;
- Provide temporary or emergency drainage to prevent back-up of surface runoff; and,
- Avoid working during heavy rainfall and for up to 24-hours after heavy events to ensure drainage systems are not overloaded.

# 5.2 Excavation Dewatering and Effects on Surface Water Quality

The management of excavation dewatering (pumping), particularly in relation to any accumulation of water in foundations or electricity line trenches, and subsequent treatment prior to discharge into the drainage network will be undertaken as follows:-

- Appropriate interceptor drainage, to prevent upslope surface runoff from entering excavations, will be installed as relevant;
- The interceptor drainage will not be discharged directly to surface waters to ensure that Greenfield runoff rates are mimicked;
- If required, pumping of excavation inflows will prevent build up of water in the excavation;
- All pumped water will be directed to the surface water drainage system for treatment prior to discharge. In the case of the electricity line, any pumped waters will be discharged over grassland to allow for filtration;
- There will be no direct discharge to local drains, and therefore no risk of hydraulic loading or contamination will occur;
- Daily monitoring of site excavations by the EM will occur during the construction phase. If high levels of seepage inflow occur, excavation work at this location will cease immediately and a geotechnical assessment undertaken; and,
- A mobile 'Siltbuster' or similar equivalent specialist treatment system will be available on-site for emergencies. Siltbusters are mobile silt traps that can remove fine particles from water using a proven technology and hydraulic design in a rugged unit. The mobile units are specifically designed for use on construction-sites and will be used as final line of defence, if required.



# 5.3 Release of Hydrocarbons during Construction and Storage

Mitigation measures proposed to avoid release of hydrocarbons at the site are as follows:-

- The volume of fuels or oils stored on site will be minimised. All fuel and oil will be stored in an appropriately bunded area within the temporary construction compounds. Only an appropriate volume of fuel will be stored at any given time. The bunded area will be roofed to avoid the ingress of rainfall and will be fitted with a storm drainage system and an appropriate oil interceptor;
- All bunded areas will have 110% capacity of the volume to be stored;
- On site re-fuelling of machinery will be carried out using a mobile double skinned fuel bowser. The fuel bowser, a double-axel custom-built refuelling trailer, will be re-filled at the temporary compound and will be towed around the site by a 4x4 jeep to where plant and machinery is located. The 4x4 jeep will also be fully stocked with fuel absorbent material and pads in the event of any accidental spillages. The fuel bowser will be parked on a level area in the construction compound when not in use and only designated trained and competent operatives will be authorised to refuel plant on site. Mobile measures such as drip trays and fuel absorbent mats will be used during all refuelling operations to avoid any accidental leakages;
- All plant and machinery used during construction will be regularly inspected for leaks and fitness for purpose;
- Spill kits will be readily available to deal with and accidental spillage;
- All waste tar material arising from road cuttings (from trenching or other works in public roads) will be removed off-site and taken to a licensed waste facility. Due to the possibility of contamination of soils and subsoils, it is not proposed to utilise this material for any reinstatement works or for storage within the spoil deposition areas; and
- An outline emergency plan for the construction phase to deal with accidental spillages is contained within the Planning-Stage CEMP (Annex 3.5). This emergency plan will be further developed prior to the commencement of development, and will be agreed with the Planning Authority as part of the detailed CEMP.

## 5.4 Groundwater and Surface Water Contamination from Wastewater Disposal

Measures to avoid contamination of ground and surface waters by wastewaters will comprise:-

- Self contained port-a-loos (chemical toilets) with an integrated waste holding tank will be installed at the temporary construction compound, maintained by the providing contractor, and removed from site on completion of the construction works;
- Water supply for the site office and other sanitation will be brought to site and removed after use to be discharged at a suitable off-site treatment location; and,
- No water will be sourced on the site during construction, nor will any wastewater be discharged to the site.

#### 5.5 Release of Cement-Based Products

The following mitigation measures are proposed to ensure that the release of cementbased products is avoided:-



- No batching of wet-cement products will occur on site. Ready-mixed concrete will be brought to site as required and, where possible, emplacement of pre-cast products, will take utilised;
- Where concrete is delivered on site, only the chute will be cleaned, using the smallest volume of water practicable. Chute cleaning will be undertaken at lined cement washout ponds within the temporary construction compound with waters being tankered off site and disposed of at an approved licensed facility. There will be no discharge of cement contaminated waters to the construction drainage system or to any drain;
- Weather forecasting will be used to ensure that prolonged or intense rainfall is not predicted during concrete pouring activities; and,
- The pour site will be kept free of standing water and plastic covers will be ready in case of sudden rainfall event.

# 5.6 Morphological Changes to Surface Watercourses & Drainage Patterns

Temporary silt fencing/silt trap arrangements (e.g. straw bales) will be placed within existing roadside/field drainage features along the electricity line route to remove any suspended sediments from the works area.

The trapped sediment will be removed and disposed of at an appropriate licenced facility. Any bare-ground will be re-seeded/reinstated immediately and silt fencing temporally left in place if necessary.

The following mitigation measures are proposed in respect of the installation of the culvert over the unnamed stream to the north of the electricity substation:-

- The stream crossing will be a clear span bridge (bottomless culvert) and the stream bed will remain undisturbed. No in-stream excavation works are proposed or anticipated as being required and therefore there will be no effect on the stream;
- At the time of construction, all guidance/best practice requirements of the Office of Public Works (OPW) or Inland Fisheries Ireland will be incorporated into the design/construction of the proposed watercourse/culvert crossings;
- As a further precaution, in-stream construction work (if required) will only be carried out during the period permitted by Inland Fisheries Ireland for in-stream works according to Guidelines on Protection of Fisheries During Construction Works in and Adjacent to Waters (2016) (i.e., July to September inclusive). This time period coincides with the period of lowest expected rainfall, and therefore minimum runoff rates. This will minimise the risk of entrainment of suspended sediment in surface water runoff, and transport via this pathway to surface watercourses (any deviation from this will be done in discussion with the IFI); and,
- The installation of the culvert will require a Section 50 license application to the OPW in accordance with the Arterial Drainage Act 1945. The stream crossing will be designed in accordance with OPW guidelines/requirements on applying for a Section 50 consent.

#### 5.6.1 Directional Drilling

 Although no in-stream works are proposed, the drilling works will only be done over a dry period between July and September (as required by IFI for in-stream works) to avoid the salmon spawning season and to have more favourable (dryer) ground conditions;



- The crossing works areas will be clearly marked out with fencing or flagging tape to avoid unnecessary disturbance;
- There will be no storage of material/equipment or overnight parking of machinery inside a 10m buffer zone which will be imposed around the watercourses;
- Before any ground works are undertaken, double silt fencing will be placed upslope of the watercourse channel along the 10m buffer zone boundary;
- Additional silt fencing or straw bales (pinned down firmly with stakes) will be placed across any natural surface depressions/channels that slope towards the watercourse;
- Silt fencing will be embedded into the local soils to ensure all site water is captured and filtered;
- The area around the bentonite batching, pumping and recycling plant will be bunded using terram (as it will clog) and sandbags in order to contain any spillages;
- Drilling fluid returns will be contained within a sealed tank/sump to prevent migration from the works area;
- Spills of drilling fluid will be clean up immediately and stored in an adequately sized skip before been taken off-site;
- If rainfall events occur during the works, there will be a requirement to collect and treat small volumes of surface water from areas of disturbed ground (i.e. soil and subsoil exposures created during site preparation works);
- This will be completed using a shallow swale and sump down slope of the disturbed ground; and water will be pumped to a proposed percolation area at least 50m from the watercourses;
- The discharge of water onto vegetated ground at the percolation area will be via a silt bag which will filter any remaining sediment from the pumped water. The entire percolation area will be enclosed by a perimeter of double silt fencing;
- Any sediment laden water from the works area will not be discharged directly to a watercourse or drain;
- Works shall not take place during periods of heavy rainfall and will be scaled back or suspended if heavy rain is forecasted;
- Daily monitoring of the works area, the water treatment and pumping system and the percolation area will be completed by a suitably qualified person during the construction phase. All necessary preventative measures will be implemented to ensure no entrained sediment, or deleterious matter is discharged to the watercourse;
- If high levels of silt or other contamination is noted in the pumped water or the treatment systems, all construction works will be stopped. No works will recommence until the issue is resolved and the cause of the elevated source is remedied;
- On completion of the works, the ground surface disturbed during the site preparation works and at the entry and exit pits will be carefully reinstated;
- The silt fencing upslope of the river will be left in place and maintained until the works area has been fully reinstated;
- There will be no batching or storage of cement allowed at the watercourse crossing;
- There will be no refuelling allowed within 100m of the watercourse crossing; and,
- All plant will be checked for purpose of use prior to mobilisation at the watercourse crossing.



A Fracture Blow-out (Frac-out) Prevention and Contingency Plan will be prepared by the drilling contractor prior to construction and will include the following measures:-

- The drilling fluid/bentonite will be non-toxic and naturally biodegradable (i.e., Clear Bore Drilling Fluid or similar will be used);
- The area around the drilling fluid batching, pumping and recycling plants will be bunded using terram and/or sandbags to contain any potential spillage;
- A double row of silt fencing will be placed between the works area and the adjacent river;
- Spills of drilling fluid will be cleaned up immediately and transported off-site for disposal at a licensed facility;
- Adequately sized skips will be used where temporary storage of arisings are required;
- The drilling process/pressure will be constantly monitored to detect any possible leaks or breakouts into the surrounding geology or local watercourse;
- This will be gauged by observation and by monitoring the pumping rates and pressures. If any signs of breakout occur then drilling will be immediately stopped;
- Any frac-out material will be contained and removed off-site;
- The drilling location will be reviewed, before re-commencing with a higher viscosity drilling fluid mix; and,
- If the risk of further frac-out is high, a new drilling alignment will be sought at the crossing location.

# 5.7 Effects on Water Supplies

The drainage control measures and pollution prevention measures discussed above will ensure the protection of the Paulstown Public Water Supply.

As an additional pollution prevention measure, no fuel storage will be permitted along the electricity line located within the Monefelim River catchment.

# 6.0 Conclusion

This SWMP has been prepared to detail the practical implementation of surface water management infrastructure to address the requirements of measures set out in the EIAR. This is a live document and will be updated by the appointed contractor prior to the commencement of development. Prior to the commencement of construction, the updated SWMP will be reviewed by the Environmental Manager (EM) and Ecological Clerk of Works (ECoW), as necessary, to confirm the appropriateness of the measures set out therein.

The SWMP incorporates the principles of SuDS; with the overall objective of ensuring that no silt, sediment or other material is discharged from the site to surrounding drainage features; to ensure that the project does not adversely affect the drainage regime within the project site and in its vicinity.

The proposed SuDS comprises drainage infrastructure to intercept and direct 'clean' incidental runoff away from works locations; and a separate surface water management train to effectively control manage and treat 'dirty' water runoff from the works areas. Given the connectivity of the project site to a designated conservation site for Freshwater Peal Mussel, the surface water management train is supplemented by further lagoon-type settlement ponds with a retention period of 10-days thus encouraging settlement of any silt/sediment prior to discharge.



The efficacy of the measures set out in this SWMP will be regularly monitored and will be verified through water quality monitoring undertaken throughout the construction phase.

Annex 1 – Altmuller & Dettmer Research Paper



#### Foreword and acknowledgment

This pdf-file is the English version of an article which is published with three other articles dealing with species and biotope protection for the freshwater pearl mussel *Margaritifera margaritifera* in Lower Saxony, North Germany

(see: <u>http://www.nlwkn.niedersachsen.de/master/C35794242\_N14750639\_L20\_D0\_I5231158.html</u>). With this pdf-file we want to give our non-German speaking colleagues an opportunity to read about the chance to do something for this endangered mussel species in Europe.

To get a good readable English text we are very glad to have our Irish friends and colleagues EVELYN MOORKENS and IAN KILLEEN on our side in our efforts to help *Margaritifera*, and we are very thankful to them for helping us in bringing our "Denglish" to a readable English version.

# Successful species protection measures for the Freshwater Pearl Mussel (*Margaritifera margaritifera*) through the reduction of unnaturally high loading of silt and sand in running waters

- Experiences within the scope of the Lutterproject -

by Reinhard Altmüller and Rainer Dettmer

#### Contents

| 1 Introduction and Objectives                                                                       | 1    |
|-----------------------------------------------------------------------------------------------------|------|
| 2 Study of sediment levels entering the Lutter - an example from the Endeholz Ditch                 | 2    |
| 3 Reduction of unnaturally high sand load through installation of sediment traps and monitoring by  | /    |
| photo documentation                                                                                 | 5    |
| 4 Accelerated reduction of fine sediment load by the use of a mill pond as a sediment trap          | 10   |
| 5 Successes for the biocoenosis of the brook                                                        | 11   |
| 5.1 Example minnows ( <i>Phoxinus phoxinus</i> )                                                    | 11   |
| 5.2 Example of the Freshwater Pearl Mussel                                                          | 15   |
| 6 Conclusion and outlook on the future                                                              | 17   |
| 7 Table of the colleagues involved in the species protection measures for the freshwater pearl must | ssel |
|                                                                                                     |      |
| 8 Summary                                                                                           | 19   |
| 9 Literature:                                                                                       | 19   |
|                                                                                                     |      |

#### 1 Introduction and Objectives

The conservation of freshwater pearl mussels [FPM] (*Margaritifera margaritifera*) and thickshelled river mussels (*Unio crassus*) is a task of european importance (Habitats Directive, Water Framework Directive). This task can only be solved by cooperative efforts of all groups and institutions that are involved with running waters.

All conservation efforts in the past for these two mussel species were focused on maintaining high water quality. For the FPM it is a requirement as all known populations of FPM live only in running waters with the highest water quality. For the thick-shelled river mussel this requirement is as well documented by the fundamental investigations from HOCHWALD (1997). But the question does arise as to whether there are more important factors for the survival of the thick-shelled river mussel than water quality alone. This species was widely distributed in Lower Saxony, for example the river Weser from the city Hannoversch-Münden

(in the south of Lower Saxony) to the city of Bremen (367 km to the north) in very different ecological conditions.

For the FPM, we have been able to clearly demonstrate that in addition to the best water quality, a naturally very low level of fine sediments is characteristic to an intact, recruiting FPM environment After leaving their host fish the young Freshwater Pearl mussels (only 0.5 mm long) live in the hollow system (=Interstitium) between gravel and stones, well protected against water current. The present day high amounts of input and load of fine materials in running waters resulting from current landuse clog up the interstitium and suffocate the typical freshwater organisms living there, including, the young FPM. Because of the failure of young mussels to survive, the FPM was threatened with extinction in the Lutter river and is threatened with extinction all over Europe in human populated regions. If the load of fine material is reduced to naturally occurring amounts, even brooks with overaged FPM populations can recover and numerous young mussels can survive and grow. This has been successfully demonstrated within the lutterproject (ABENDROTH 1993, ALTMÜLLER & DETTMER 2000, ALTMÜLLER 2005). The lutterproject is situated at the south edge of the Lüneburg Heath (Germany, Lower Saxony). It is a nature conservation project led by the counties of Celle and Gifhorn to restore the heather brook Lutter. The reason and main target organism is the freshwater pearl mussel. This very successful nature conservation project was made possible through the financial support of the German Federal Agency for Nature Conservation within the scope of its programme concerning riparian land (SCHERFOSE et al. 1996) by the Ministry for Environment of Lower Saxony and of the financial and manpower support of the counties of Celle and Gifhorn.

For successful measures to be taken to reduce unnaturally high sediment load it is necessary to know the origin of the sediment. Apart from the necessity to analyse the specific sediment origin throughout the catchment there are some general experiances and information knowledge. The experiences of unnaturally high loading in the Lutter catchment was reported by ALTMÜLLER & DETTMER (1996). The experiences of unnaturally high loading in the Lutter catchment was reported by ALTMÜLLER & DETTMER (1996). This paper showed that soil erosion and fish pond waste were important contributers to the high loading of fine sediments in running waters.

Since 1996 more knowledge and experience has been gained about the reasons for the unnaturally high load of fine material, which are described herein. All observations and measurements have been carried out to determine the reasons of the extreme sediment input to running waters and to find workable countermeasures.

# 2 Study of sediment levels entering the Lutter - an example from the Endeholz Ditch

Within the scope of the measurement program "quantifying load of sand and mud in heather creeks" a sediment trap was installed in the Endeholz Ditch. The Endeholz Ditch is a small tributary of the Lutter river which has a catchment size of about 2.38 km<sup>2</sup> (HEUER-JUNGEMANN i. lit). Originally it was a small creek which has been extended to form a drainage ditch. About 10 m above it's confluence with the Lutter river a wooden box was installed in the river bottom (Fig. 1).



Fig. 1: Sediment trap in the Endeholz Ditch to quantify the load of fine sediments. The wooden box (Size: 2 m long, 1 m wide, 0.5 m deep) is open on the top. The sandy material which is mostly transported by rolling over the substrate, along with organic material is deposited in and caught by the box. The sand ripples which are seen in Fig. 1 on the left are typical of an unnaturally high sandy load and are more characteristic of a beach than the bottom of a natural heather creek.

From the end of 1991 to mid 2002 the sediment trap was emptied every week by young men who were doing their civilian service<sup>1</sup> (Zivildienstleistende = ZDL) in the nature conservation specialist agency of Lower Saxony. The amount of deposited material was measured as exactly as possible (Fig. 2).



Fig. 2: Sediment trap in the Endeholz Ditch just before the confluence with the Lutter river (background) with the mound of sandy and organic material which was taken out of the trap from 1991 to 03. April 1998. The size of the mound shows the large amount of material carried by this small ditch.

<sup>&</sup>lt;sup>1</sup> The sample collection within the measurement program "quantifying load of sand and mud in heather creeks" has been done by the ZDL of the nature conservation agency. The following ZDL beared the main responsibility: Carsten Brauns (1991), Gundolf Reichert (1991/92), Gerrit Grannas (1992/93), Dierk Rischbieter (1993/94), Moritz Haupt (1994/95), Niels Ubbelohde (1995/96), Tobias Polch (1996/97), Michael Koslowski (1997/98), Gunther May (1998/99), Bernhard Schwarz (1999/2000) Arnold Ziesche (2000/01) und Michael. Herbst (2001/02).

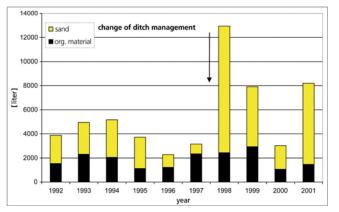



Fig 3: Annual sum of sediment load in the Endeholz Ditch. The change in the method of ditch management from hand clearance to machine clearance from the end of 1997 had a damaging effect on the ditch bottom and its banks, and the sediment load increased significantly. The amount of load after the maintenance of the ditch by machines was much higher than is shown in the figure as the sediment trap overflowed in the first weeks after that occasion.

In Fig 3 the result of weekly emptying the sediment trap is shown as annual sums. The change of load amount from about 3.2 m<sup>3</sup> in the year 1997 to about 12.9 m<sup>3</sup> in the year 1998. Up to 1997 management of the Endeholz Ditch was carried out by hand but from autumn 1997 it was was done using an excavator. The effect of the excavator was to loosen the sand from the banks and bed of the ditch and to transport it downstream. The authors only heard of this change from the young men who were doing their civilian service, who suddenly every week had to remove more than one m<sup>3</sup> out of the sediment trap. The figures 4 to 6 show the effect of this change.



Fig. 4: The Endeholz Ditch in spring of 1998 after management by machines. On the right side the excavated material can be seen. The river bottom is exclusively sand. The ripples are characteristic of the moving sand.



Fig. 5: Mouth of the Endeholz Ditch to the Lutter river in April 1994. At this time very little sand was transported into the Lutter river.



Fig. 6: Mouth of the Endeholz Ditch to the Lutter river on 03.04.1998. The large mass of sand which has been transported into the Lutter river after management of the ditch by machines is clearly seen. The sand which is seen here wasn't caught in the sediment trap 10 m upstream, because the trap was full. Therefore, the amount of load shown in Figure 3 for 1998 is an underestimate.

# 3 Reduction of unnaturally high sand load through installation of sediment traps and monitoring by photo documentation

The input of unnaturally high load of fine sediments in running waters can arise from several different sources depending on the type of land use. Therefore different measures are required to reduce the input. Erosion from farmland results in a considerable loss of valuable soil, therefore it makes sense for farmers to increase their efforts to minimize this loss. In spite of the efforts of the farmers, there will be soil conditions (for example directly after

ploughing) when heavy rainfall will bring high amounts of erosion. There needs to be methods utilised that will reliably prevent harmful input of fine sediments in all situations.

Once it was recognised that the unnaturally high sand load from drainage ditches which flow into the Lutter and its tributaries was the essential reason for the absence of FPM reproduction, sediment traps and plant beds were designed to stop the problem. Sediment traps are created by widening and deepening the drainage ditches. This causes the flow velocity in the area to be reduced so that the sand, silt and coarse organic material is deposited and can be excavated with ease. The function can be demonstrated by taking the sediment trap near the village of Bargfeld as an example. A photo series shows the origin of the sandy load and the successful disposal of these pollutants by the use of the sediment trap.

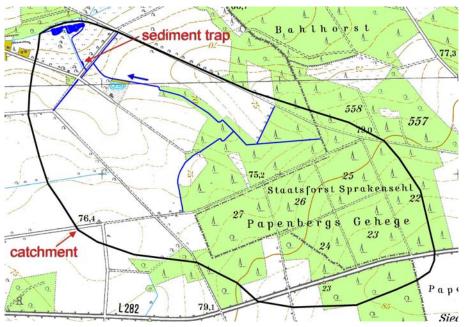



Fig.7: The sediment trap of Bargfeld (in the picture top on the left side). The sediment trap is situated near a road and, therefore it is within easy and cost-effective reach by machines to empty it.

The sediment trap of Bargfeld (Fig. 7) (WIDRINKA in litt.) receives material from a catchment of about 2 km<sup>2</sup>, of which about 50 % is farmland. This area is almost completely drained and the drainage ditches are cleaned out by machines every year as part of the obligations of water maintenance. The sandy soils are very thin and lay on impervious glacial till. Because of this they can hold and store only small amounts of water. So the drainage ditches are constantly water-bearing only in wet years. In "normal" years they dry out in summertime.

As with all other cases within the Lutterproject, this sediment trap is situated for ecological reasons directly downstream of the part of the drainage ditch that is under periodic maintenance. So the total sand load of the entire stretch upstream can be caught. The riverbed downstream is not under water maintenance - only the vegetation above water level is cut, in exceptional circumstances. Being permanently water-bearing, the strech downstream of the sediment trap is free of unnatural sediment loads and can develop in a near-natural way.

For economic reasons the sediment trap is built near a road in order to reach it easily with machines for excavation. The system of water management is shown in Fig. 7 and 8. The water which comes from the farmland flows into ditches near the road, crosses the road (red arrow) and flows to the north north-west (nnw) into the little creek called "Köttelbeck" in the

region of "Langenfeld". In this ditch a sediment trap was built near the road in the winter of 1998/99.



Fig. 8: The complete system, comprising the sediment trap and the plant-bed situated at the lower end of the catchment. The water from the drainage ditches first enters the the sediment trap and then flows through the plant filtration bed. This is a secondary system to absorb the fine particles, which are so small that they do not settle in the sediment trap.



Fig. 9: View in flow direction of the "Sediment trap Bargfeld" in summer of 1999 about one year after completion and after the first time of excavation. In front of the left side the mouth of the drainage ditch can be seen. At the far end on the left of the sediment trap the drainage ditch continues its flow through dense vegetation.

In winter 2004/2005 the function of this sediment trap was documented photographically. It should be pointed out that there is a time difference between "cause of the unnaturally high load" (this means: ditch management) and "occurrence of the sand downstream" (this means: in the sediment trap).

The following photo series clearly show the effect of ditch management by machines, the successive transport of sand and the function of the sediment trap.

#### Photo series 1 (Fig. 10a-d)

The position of the photographer is about at the top of the red arrow in Fig. 8. For an illustration of the situation in autumn, a picture was taken in autumn of 2005. (Fig. 10a).



Fig. 10: Drainage ditch running parallel to the farm road. For position of the photographer see Fig. 8, top of the red arrow, view direction: sw.

Fig. 10a: Situation before the annual ditch maintenance (12.11.2005).

Fig. 10b: directly after maintenance by machines (21.11.2004).

Fig 10c: More than one month after maintenance at 30.12.2004 . Additional sand is transported in this stretch.

Fig. 10d: At 16. 03. 2005, most of the sand which was loosened during clearance is washed away. It remains a stony and gravely river bed as is typical for natural creeks in this region.

**Photo series 2, Fig. 11a – 11 d:** Position of the photographer the same as in fig. 9, south of the sediment trap. View direction: north in flow direction of the drainage ditch.



#### Fig. 11: Sediment trap "Bargfeld".

Fig. 11a: the sediment trap on 30 12. 2004. No sand has reached the sediment trap, more than five weeks after the ditch clearance and only 30 m downstream of position fig. 9 and 10. Only after two months (fig.: 11b, 22.01.2005), the amount of transported sand becomes more visible and then more evident two weeks later (fig. 11c, 06.02.2005). One month later (fig. 11d, at 16. 03. 2005) the sand transportation in the drainage ditch has been completed and the sand has reached the sediment trap. The plant has done its job. The sediment trap is approximately one third full, equivalent to about 50 m<sup>3</sup>. At this time the drainage ditch is already washed free of sandy material (see fig. 10d). Without the sediment trap the mass of sand would have been transported downstream to the Lutter River where it would have infiltrated and overlayed the naturally stony and gravely river bed similar to the situation visible in fig. 10b and 10c. Also, without the sediment trap there would be no evidence of the quantity of sand that was mobilised by only one episode of ditch management by machine.

Both photo series demonstrate and explain one origin of unnaturally high sand load in a small drainage ditch in a low gradient area. It is a stark demonstration of the ecological problem present for the FPM. They also show that the chances to minimize this source of threat for the biocoenosis of running waters is relatively easy when located at the right place. Additionally they show that one needs a sediment trap to demonstrate the huge amounts of sand which can be contributed to a natural creek by one small drainage ditch. At the same point on the drainage ditch the situation can look stable for a long time (Fig. 10b and 10c). However, the sand passes over this area and, therefore one is unable to formulate an impression of the quantity of the sand that has passed through.

The sediment trap Bargfeld is an example of how unnatural sand input is prevented from entering natural running waters within the Lutterproject. Installation of sediment traps in each of the numerous drainage ditches within the catchment of the Lutter River was reliant on the fact that the areas were purchased by the project management. Then a procedure was developed to get permission to install the sediment traps. The realization of all the necessary projects took a very long time - from 1989 up to the present (2006). Therefore the input of sand could only be reduced in successive stages. The effect to the biocoenoses of all these measures therefore could only arise after the gradual improvement of the ecological conditions.

# 4 Accelerated reduction of fine sediment load by the use of a mill pond as a sediment trap

The reduction of fine sediment load in the lower reaches of the Lutter River got an important boost through purchasing the rights to an old Mill in the village of Eldingen by the lutterproject management. The remaining semi natural streches of the river Lutter lie downstream of this mill. In the summer of 1989 the owner of the mill was informed about the problems the pearlmussels had with mobilized sediments coming from the mill pond. After this he kindly agreed not to drain off the mill pond. Previously, the mill weir had been raised during flood events to preserve the buildings. The effect or success of not raising the weir is shown in figure 12. After purchasing the watermill in 1992, the water level of the mill pond has been permanently lowered as far as it was possible, so that the water could pass the mill even in flood without damaging the buildings (See 12b). Since then the mill pond has never been emptied and it acts as a very large sediment trap. The accumulated sand and mud has been taken out by the use of a suction dredge. To date, about 6,800 m<sup>3</sup> of sand and mud have been pumped out (personal communication: government of the county of Celle and engineering office HEIDT & PETERS, Celle).



Fig. 12: Back water of the mill of Eldingen just before (left) and just after (right) the notary certification of the contract of sale. Prior to 1992, large quantities of sediments had already accumulated in the backwater of the mill (right picture).

As these pumped out masses of sediments are not washed downstream, they have not covered the natural river bottom and killed the typical biocoenosis. On the contrary, the sand masses which covered the stony and gravely river bottom up to this time were successively washed away so that gravel and stones appeared again at the surface. Fig. 13 shows how much the quantity of sediment drift has been reduced by this action. In the year 1968 under leadership of BISCHOFF a small bypass was built in a narrow curve of the Lutter about seven kilometres downstream of the mill of Eldingen. About 5 - 10 % of the Lutter water runs through this bypass. In January of 1991 a sediment trap like the one shown in fig. 1 was built in this bypass. This sediment drift from 1991 to 2006. The sum of rainfall has been measured in the private "weather station" of the first author, which is located about 5 km from the sediment trap. The high rainfall in winter 1993/94 gave rise to a corresponding high flow in

the Lutter, and produced very high sediment drift. In 1994 up to  $19 \text{ m}^3$  sand was removed from the sediment trap. This equates to about  $190 - 380 \text{ m}^3$  sand transport in the Lutter. As with the trap in the Endeholz ditch, this sediment trap also overflows in the weeks with the highest sand transport. As the fine sand fraction doesn't deposit, the real amount of transported material is even higher than has been measured.

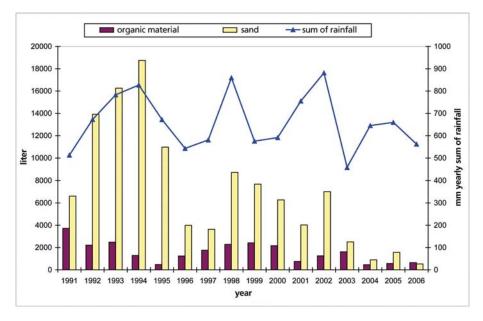



Fig. 13: Trend of sediment transportation in the Lutter. The amount has been measured in a sediment trap as shown in fig. 1. The success of the sediment trap "mill pond" and of the sediment traps in the drainage ditches is clearly seen.

Initially the upper reaches of the c. seven kilometre long stretch downstream of the mill were washed free from overlaying sand. The stony and gravely substrate emerged again and could be colonized by the typical Flora and Fauna. The typical inhabitants of a natural brook reacted immediately to this naturally recovered structure of the river bottom. An example of this phenomenon was the new high reproduction of minnows (*Phoxinus phoxinus*).

#### 5 Successes for the biocoenosis of the brook 5.1 Example minnows (*Phoxinus phoxinus*)

Minnows are typical and numerous inhabitants of waters with stony gravely bottom and / or shores. In the lower reaches of the river Lutter downstream of the mill of Eldingen they had only seldom been caught by annual electro fishing, which had been carried out since 1985. This changed after the transport of fine sediments was stopped in summer 1992. The winter flood in 1993/94 then washed out the sand, which had previously covered the stony gravely river bottom (ALTMÜLLER & DETTMER 1996). The minnows reacted immediately to this and reproduced very successfully. Given their former rareness the sudden appearance of breeding minnows was very surprising. It was also confirmation that the large amounts of sand were the greatest remaining problem for the river ecosystem.

Minnows spawn in gravel material and prefer a grain size of 2 cm in diameter (BLESS 1992), and they spawn in sections with high current. While spawning the Minnow -♀ inject their eggs between the gravel (Fig. 14). The eggs cling on to the gravel because of their adhesive surface. Here they are protected against voracious individuals of the same species and are supplied by a circulation of oxygen rich water. After about a one week's embryonic development the hatched out fish larvae migrate as deep as possible into the substrate, most likely to escape the suction from the turbulent water above them. They are supported by a yolk sac and are not able to swim (benthic phase). They hide in narrow niches between stones where the current is at its lowest (Fig. 15). Here they are most protected. However,

these are also the parts of the river bed that are first clogged if sediments are brought into the river - which is fatal for the inhabitants. After development within the substrate the minnow larvae migrate upwards through the interstitium into the open water (pelagic phase, free swimming larvae).

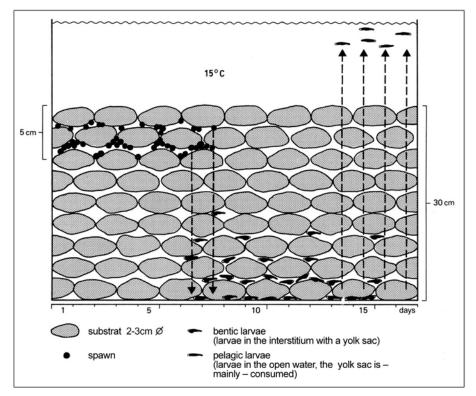



Fig. 14: Time table (Tage = days) of the space used by juvenile stages of minnows at 15 °C water temperature (after experiments in an aquarium). The aquarium is filled with a 30 cm thick gravel layer in a size which minnow-Q prefer. For explanation see text (Figure adapted slightly from BLESS 1992).

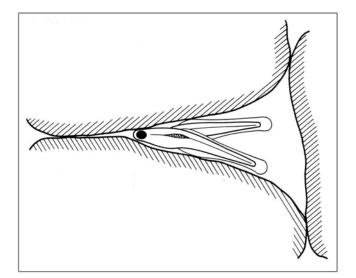



Fig. 15: Minnow larvae hide into narrow niches made by the gravel, probably to protect themselves against upward suction by the current. Here (as deep as possible in the bottom in the narrow niches formed by the gravel) the suction power is lowest and so is the danger of washout (after BLESS 1992).

The following graphs (Fig. 16a-e) show the minnow population in the lower reaches of the river Lutter downstream the mill of Eldingen. In the graphs the number of minnows per 100

metres is shown within each of the randomly selected fishing sectors. The sectors which have not been fished are marked. It can be clearly seen that the minnows - starting in the upper reaches - successively colonized (or re colonized) the river Lutter. Minnows are now (in 2006) again the typical and most numerous inhabitants of the river, and always accompany the author during the snorkelling surveys to investigate the pearl mussel population.

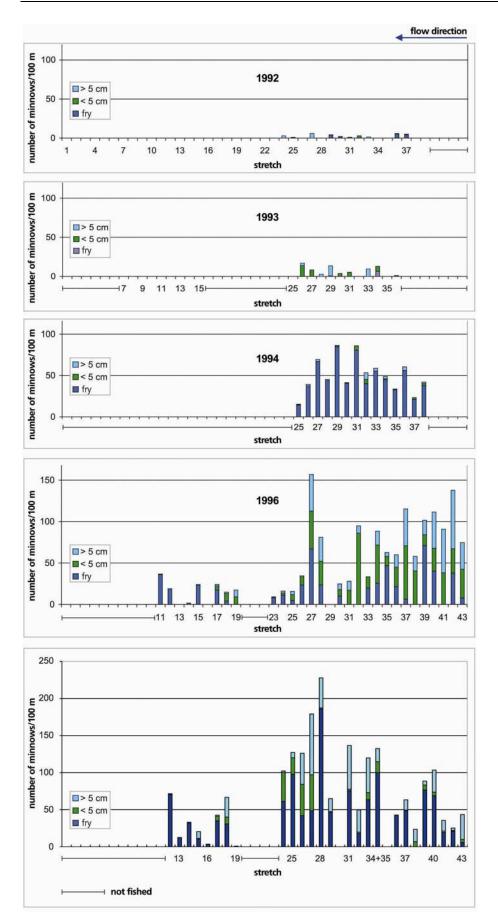



Fig. 16a-e: Development of the minnow population in the natural lower reaches of the river Lutter in the years 1992 - 1998. Sectors which were not investigated by electro fishing are shown by a line. Abschnitt = stretch; nicht befischte = not fished.

## 5.2 Example of the Freshwater Pearl Mussel

As the rate of growth of the FPM is very slow and the young mussels spend at least the first 5 years of their life hidden in the river bed substrate, the success of the measures for the species and biotope protection for the FPM (the target species), could only be shown after several years.

In the river Lutter the young FPM need to reach the age of about seven years before they are big enough to emerge from the gravel into the flowing water to get more water through their gills for better oxygen and food supply. It is only then that they can be seen by the investigator without destroying their habitat by dredging.



Fig. 17: River bottom of the Lutter with an adult FPM and three young mussels which are not easily seen between the gravel.

The first shells of young mussels were found in 1997, and the mussel population has been investigated by snorkelling annually since 2000.

The results of these investigations are shown in figure 18. In 2006 more than 83 % of the total of about 7,400 FPM in the river Lutter are younger than 20 years. This success is in great contrast to the fact that all other european freshwater pearl mussel populations in human settled regions are without successful reproduction and therefore they are threatened with extinction (GEIST 2005).

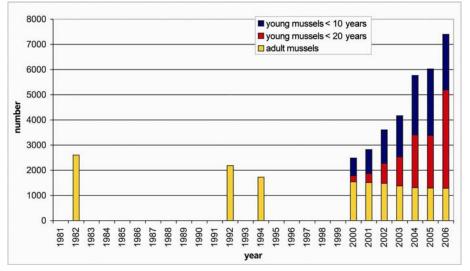



Fig. 18: Population development of the Freshwater Pearlmussels in the river Lutter. This positive trend is due to the reduction of the anthropogenic sand load since the upstream mill pond has not been drained off and therefore the sediments are no longer washed out of the mill pond.

The long term survival of the FPM population in the river Lutter was given additional hope with the verification of the presence of young brown trout (*Salmo trutta f. fario*) in 2005 and 2006, which were naturally infected with FPM glochidia. (Fig. 19). Since the year 2003 no brown trout have been artificially infected with larva (glochidia) of the FPM in the natural lower reaches of the river Lutter. Furthermore, given that the oldest of the young FPM came to mature age and in view of such a large number of young mussels, natural infection of brown trout should be possible. However, to be certain of this, the artificial infection of brown trout with FPM glochidia must be stopped. The young infected brown trout which were found in 2005 and 2006 live in reaches of the river Lutter where only a few old FPM can be found. These few individuals produce too few glochida to successfully infect brown trout. The high number of glochida necessary for an intensive infection can only come from the high number of young mussels which are maturing at present.

The age composition of the infected brown trout is very interesting. Most of the infected fish examined in May of 2006 were born the previous year. They had been infected at an age of only a few months old. During the periods of artificial infection, fish this young were not utilised as they are very sensitive and easily damaged.



Fig. 19: Young brown trout of 2005 with nearly ripe young freshwater pearl mussels in the gills (light points) (result of electro fishing for monitoring - 07.05.2006). The glochidia are derived from young mussels which have matured after successful species and biotope protection measures. They will build up the F2 generation, but any success cannot be proven for another 5 - 7 years.

## 6 Conclusion and outlook on the future

Unnaturally high sediment load, produced by human land use and other activities, considerably affects running waters and their biocoenosis. Most of the running waters of the northern german lowland are in this damaged condition.

Taking the example of the river Lutter and its ecologically very demanding resident population of freshwater pearl mussel, it has been shown that there are indeed opportunities for restoration and, within this, chances of survival even for very demanding species which once were typical and abundant. This is dependent upon water quality not being reduced by waste water or unnaturally high input of nutrients, that there is still the original or a nearnatural river bottom, and no unnatural sediment input.

The nature conservation measures for the freshwater pearl mussel in the catchment of the river Lutter were only made possible by the considerable funds made available for the Lutter Project, and by the goodwill, trust and cooperation of everyone involved in the project (ALTMÜLLER 2005).

The experiences and knowledge from the Lutter Project should be used not only for freshwater pearl mussel conservation measures in other catchments, they should be used in general for river conservation, development and restoration measures.

Anthropogenically derived high sediment load clogs the lattice system (Interstitium) between sand, gravel and stones so that the typical animals living there die. Furthermore, sediment covers continously, in a rolling movement – like shifting sand dunes – even in a river bottom that was originally stable.

Each river bottom that is mainly stable is colonized by organisms almost on the surface. Where there is light and nutrient, algae may grow, but even small animals colonise a stable bottom in huge numbers or they live burrowed by themselves in the upper film. Even these less demanding surface organisms are suffocated by shifting sediment dunes, as well as those that live in the deeper interstitium.

As with the reduction of nutrient load, the reduction of fine sediment load must become a general requirement within running water restoration and protection work and a common goal of water and nature conservation.

In every case the place for reducing the unnaturally high load should be located as close as possible to the source of the problem. Erosion is harmful to a farmer's business and, therefore, it is in every farmer's interest to take all known and possible steps to reduce erosion and preserve economic viability. The most important measure is to have as complete a soil cover as possible. However in the course of a year their may be a phase without soil cover for arable farmland. For this period of time it is necessary to take precautionary measures on all sites which are at risk from erosion. For some farmers this precaution may seem to be excessive, because incidents of erosion are relatively few in number and with long periods between, and may even discourage some farmers from taking precautionary measures because of economic impact. However, even a single high erosion incident can bring major sediment input which can severely damage running waters and their very long lived biocoenosis.

Within the sphere of the Lutter project with maintenance of waters, especially management of drainage ditches, and the resultant sediment load, from an economic point of view it is indispensable to install sediment catchers in all drain ditches. In time it is possible to take out of the waters both the sediments which are mobilized by ditch management and those which are coming from erosion and/or other origins. The excavation of the sediment traps can be done within the yearly maintenance of waters without any significant increase in cost, provided that the sediment trap is located where it will have maximum effect and its dimensions are big enough. However, the emptying of the sediment traps has to be done with care or else they will refill very quickly and then overflow. Special responsibility for the correct management of the sediment traps has to be taken by the association that also maintains the waters and manages the ditches.

The measures of nature and water protection that are described in this article especially apply to the preservation and recovery of the freshwater pearl mussel. But all measures together already contribute towards fulfilling targets set within several Directives of the European Parliament. So the restoration work on the lower reaches of the river Lutter are very successfull species and habitat conservation projects within the European Habitats Directive but also within the European Water Framework Directive to achieve good ecological conditions:

- Within the European Habitats Directive the habitat 3260 "Water courses of plain to montane levels with the *Ranunculion fluitantis* and *Callitricho-Batrachion* vegetation " have been brought into favourable conservation status (Annex I, Directive 92/43/EWG)
- the populations of the freshwater pearl mussel, the Green Club-tailed Dragonfly (Ophiogomphus cecilia) and the Bullhead (Cottus gobio) has been brought into favourable conservation status (Annex II, Directive 92/43/EWG).

Within the European Water Framework Directive (Directive 2000/60/EC) the recovered stretch of the river Lutter, or rather the condition of it, was brought into a good status, i.e. the hydromorphological characteristics and the physico-chemical quality elements.

In addition to the above, the special feature of this water protection, water conservation and nature conservation project is that there are only small follow-up costs and also no costs to manage a specific state of cultural landscape.

# 7 Table of the colleagues involved in the species protection measures for the freshwater pearl mussel

The results of electrofishing and the success of the species protection measures that are described here has been achieved by enthusiastic friends of nature, generally in their free time. The spawning time of the FWP-♀ is not predictable. Therefore in summer from mid-July all private appointments had to be subordinate to the life history of the mussels. In the following all attendees of the species protection measures for the freshwater pearl mussel in Lower Saxony (also in the rivers Lachte and Bornbach) are listed in alphabetic order.

Reinhard Altmüller, Wolf-Dietrich Bischoff, Dietrich Blanke, Ulli Brandt, Rainer Dettmer, Frauke und Heiner Drögemüller, Christian Gietz, Otto Golze, Günter Grein, Roger Günsel, Stefan Heitz, Iris Herrmann, Thomas Herrmann, Matthias Holsten, Renate und Stefan Hölter, Lennart, Manuel und Norbert Horny, Gerd Hübner, Thomas Kaiser, Heinrich Klaholt, Andreas Knoop, Ernst und Ole Kohls, Henning Köneke, Gabi Kremming, Jens Kubitzki, Peter Lorz, Hans-Jürgen Löther, Sonja Lüßmann, Christian Makala, Anna, Hans und Moritz Menneking, Lars und Wolfgang Mosel, Annette Most, Dirk Mundt, Matthias Olthoff, Sören Ostermann, Ulrich Pittius, Gabriele Potabgy, Anke Preiß, Manfred Rasper, Günter, Ronja und Vigdis Ratzbor, Dierk Rischbieter, Thomas Schick, Gudrun Schmal, Daniel Schneider, Burkhard und Ulrich Schnepper, Peter Sellheim, Brigitte Steinhardt, Egon Steinkraus, Agnes Steinmann, Andreas Thiess, Frank, Hans-Hermann und Holger Trumann, Wieland Utermark, Günther Wilkens.

In addition to the young men listed an page 3 who made their civilian service (ZDL) were the following ZDL involved in the species protection measures and the surveys:

Thomas Clavier, Carsten Dettmann, Michael Friese, Thorben Fründt, Michael Geilke, Manfred Grenz, Günther Hansen, Horst Hildebrandt, Markus Kietz, Thomas Klug, Andreas Nitschke, Ulrich Söffker und Alexander Wiebe.

## 8 Summary

The freshwater pearl mussel was formerly abundant in running waters of the "Lüneburg Heath", a north eastern landscape in Lower Saxony in the North of Germany. Using the example of the remaining freshwater pearl mussel population in the river Lutter it has been shown that good water quality alone is not enough for its survival. The unnaturally high amounts of load (sand and silt) are harmful substances for the river biocoenosis. Only after the reduction of these high amounts of load could typical fish such as minnows (*Phoxinus phoxinus*) naturally reproduce. Also, it is only after the reduction of the huge load that the relief measures which focused on artificially infecting wild living brown trout (*Salmo trutta* f. *fario*) with glochidia became successful with young mussels surviving and growing. Currently the next mussel generation has started to grow up without any artificial help.

With the installation of sediment traps in all drainage ditches a method has been developed and used, which can help to reduce the problems with unnaturally high load of fine sediment and which may be applied across Europe.

Some targets of the European Habitats Directive and of the European Water Framework Directive are shown to be achievable.

## 9 Literature:

ABENDROTH, D. (1993): Errichtung und Sicherung schutzwürdiger Teile von Natur und Landschaft mit gesamtstaatlich repräsentativer Bedeutung. Projekt Lutter: Die Lutter - ein Heidefließgewässer in den Landkreisen Celle und Gifhorn, Niedersachsen. – Natur und Landschaft 66 (1): 24 - 28.

ALTMÜLLER, R. (2005): Erfolgskontrollen im Naturschutzgroßprojekt "Lutter" unter besonderer Berücksichtigung der Flussperlmuschel und einiger Fischarten.– In: NICLAS, G. & V. SCHERFOSE (Hrsg.): Erfolgskontrollen in Naturschutzgroßvorhaben des Bundes. Teil I: Ökologische Bewertung. – Naturschutz und Biologische Vielfalt 22: 115 - 135.

ALTMÜLLER, R. & R. DETTMER (1996): Unnatürliche Sandfracht in Geestbächen – Ursachen, Probleme und Ansätze für Problemlösungen - am Beispiel der Lutter. – Inform.d. Naturschutz Niedersachs. 16, Nr. 5 (5/96): 222 -237.

ALTMÜLLER, R. & R. DETTMER (2000): Erste Erfolge beim Arten- und Biotopschutz für die Flussperlmuschel (*Margaritifera margaritifera* L.) in Niedersachsen. – Natur und Landschaft 75 (9/10): 384 -388.

BLESS, R. (1992): Einsichten in die Ökologie der Elritze *Phoxinus phoxinus* (L.). Praktische Grundlagen zum Schutz einer gefährdeten Fischart. – Schr.-Reihe für Landschaftspflege und Naturschutz 35, 68 S.; Bonn-Bad Godesberg.

EUROPÄISCHE UNION (23.10. 2000): Richtlinie 2000/60/EG des Europäischen Parlaments und des Rates vom 23. Oktober 2000 zur Schaffung eines Ordnungsrahmens für Maßnahmen der Gemeinschaft im Bereich der Wasserpolitik. – Amtsblatt der Europäischen Gemeinschaften DE: L 327/1 -L 327/72.

GEIST, J. (2005): Conservation Genetics and Ecology of European Freshwater Pearl Mussels (*Margaritifera margaritifera* L.). – Diss. Univ. München, Wiss.-Zentr. Weihenstephan für Ernährung, Landnutzung und Umwelt, 121 S. HOCHWALD, S. (1997): Das Beziehungsgefüge innerhalb der Größenwachstums- und Fortpflanzungsparameter bayerischer Bachmuschelpopulationen (*Unio crassus* Phil. 1788) und dessen Abhängigkeit von Umweltparametern. – Diss. Univ. Bayreuth, Bayreuther Forum Ökologie, Bd. 50, 163 S.

RAT DER EUROPÄISCHEN GEMEINSCHAFTEN (1992): Richtlinie92 / 43 / EWG Des Rates vom 21. Mai 1992 zur Erhaltung der natürlichen Lebensräume sowie der wildlebenden Tiere und Pflanzen. – 1992: L 206/7 -L 206/50.

SCHERFOSE, V., A. HAGIUS, C. KLÄR, G. NICLAS, J. SAUERBORN, B. SCHWEPPE-KRAFT & U. STEER (1996): Förderprogramm zur Errichtung und Sicherung schutzwürdiger Teile von Natur und Landschaft mit gesamtstaatlich repräsentativer Bedeutung. Naturschutzgroßprojekte und Gewässerrandstreifenprogramm. – Natur und Landschaft 71 (7/8): 283 -286.

## The authors



Dr. Reinhard Altmüller, born 1948, studied biology and read for his doctorate at the Georg-August-Universität at Göttingen. Since 1976 he has been responsible for Invertebrates at the Lower Saxony Specialist Agency for Nature Conservancy. One focus of his job has been to investigate the organisms of running waters, especially the freshwater pearl mussel, and the development of ways to improve their habitats.



Rainer Dettmer, born 1955, studied biology at Hanover. In his dissertation he investigated the biology of the freshwater pearl mussel (1982). Since then he has worked on the biology and conservation of naiads and other limnological questions, especially electro fishing, funded by different institutions (TiHo Hannover, Lower Saxony State Agency for Ecology, NLWKN, Nature Conservation Organisations, Nature Conservation Council).

## Impressum

Editor:

Lower Saxony Water Management, Coastal Defence and Nature Conservation Agency [Niedersächsischer Landesbetrieb für Wasserwirtschaft, Küsten- und Naturschutz (NLWKN) – Fachbehörde für Naturschutz –]

The "Informationsdienst Naturschutz Niedersachsen" is published at least 4 x a year. ISSN 0934-7135 http://www.nlwkn.niedersachsen.de/master/C14754742\_N14750639\_L20\_D0\_I5231158.html Reprints only with the permission of the editor.

The authors are responsible for the factual contents.

1. edition 2006, 1 – 3.000

Fotos: R. Altmüller ©.

Fig. 13 u. 14 (page 13) from "BLESS, R. (1992): Einsichten in die Ökologie der Elritze *Phoxinus phoxinus* (L.). Praktische Grundlagen zum Schutz einer gefährdeten Fischart. – Schr.-Reihe für Landschaftspflege und Naturschutz 35" kindly allowed by the German Federal Agency for Nature Conservation (Bundesamt für Naturschutz), Bonn.

Origin of the topographic maps:

Source: Extract from geospatial basic data of the Surveying and Cadastral Authority of Lower Saxony, Germany **& LGN** 

Cartography: Peter Schader, NLWKN – Naturschutz – Editorship: Manfred Rasper, NLWKN – Naturschutz –

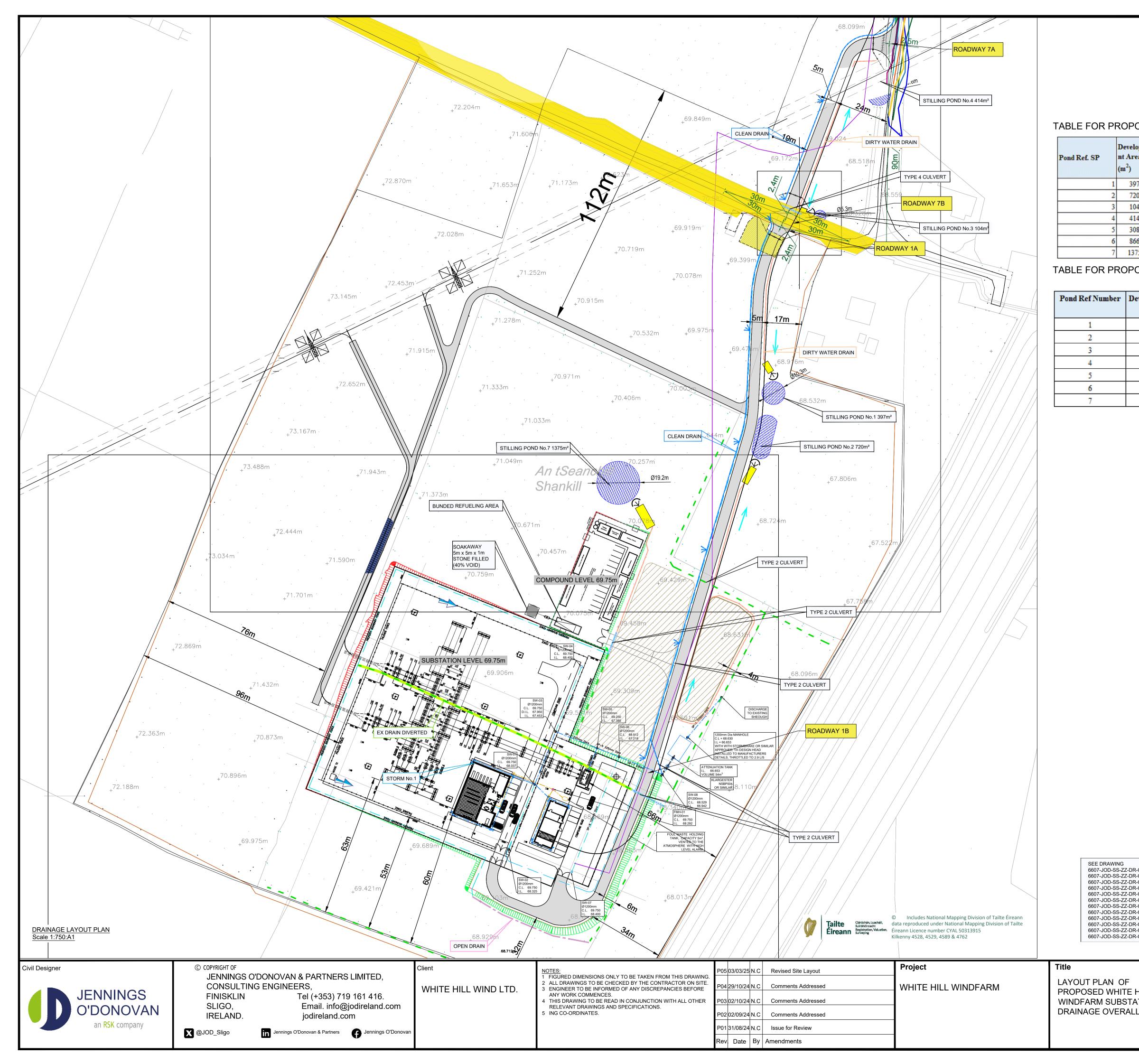
Authors address:

Dr. Reinhard Altmüller NLWKN, Betriebsstelle Hannover-Hildesheim Göttinger Chaussee 76 A, 30453 Hannover reinhard.altmueller@nlwkn-h.niedersachsen.de

Rainer Dettmer Giesener Str. 13 30519 Hannover

Order:

Niedersächsischer Landesbetrieb für Wasserwirtschaft, Küsten- und Naturschutz (NLWKN) – Naturschutzinformation –


Postfach 91 07 13, 30427 Hannover e-mail: naturschutzinformation@nlwkn-h.niedersachsen.de fon: 0511 / 3034-3305 fax: 0511 / 3034-3501

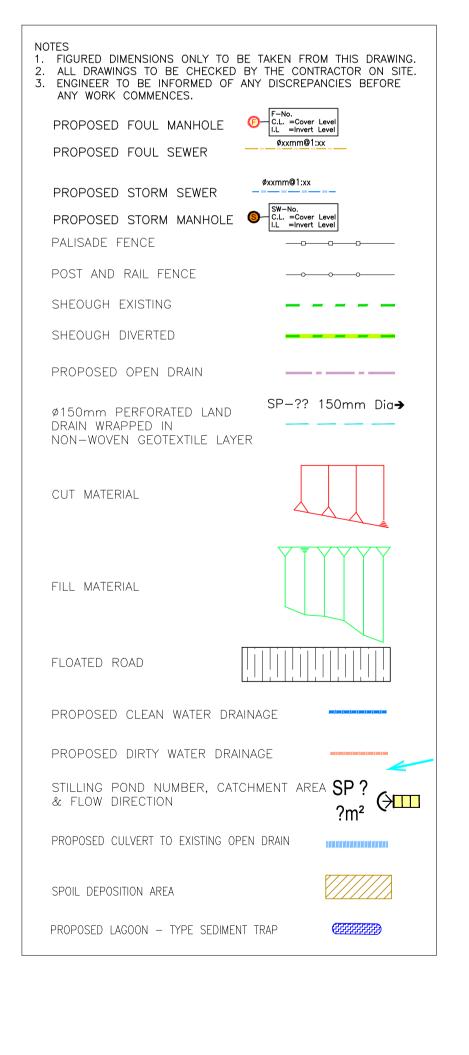

www.nlwkn.de > Naturschutz > Veröffentlichungen

## Annex 2 –

Planning-Stage Drainage/Surface Water Management System

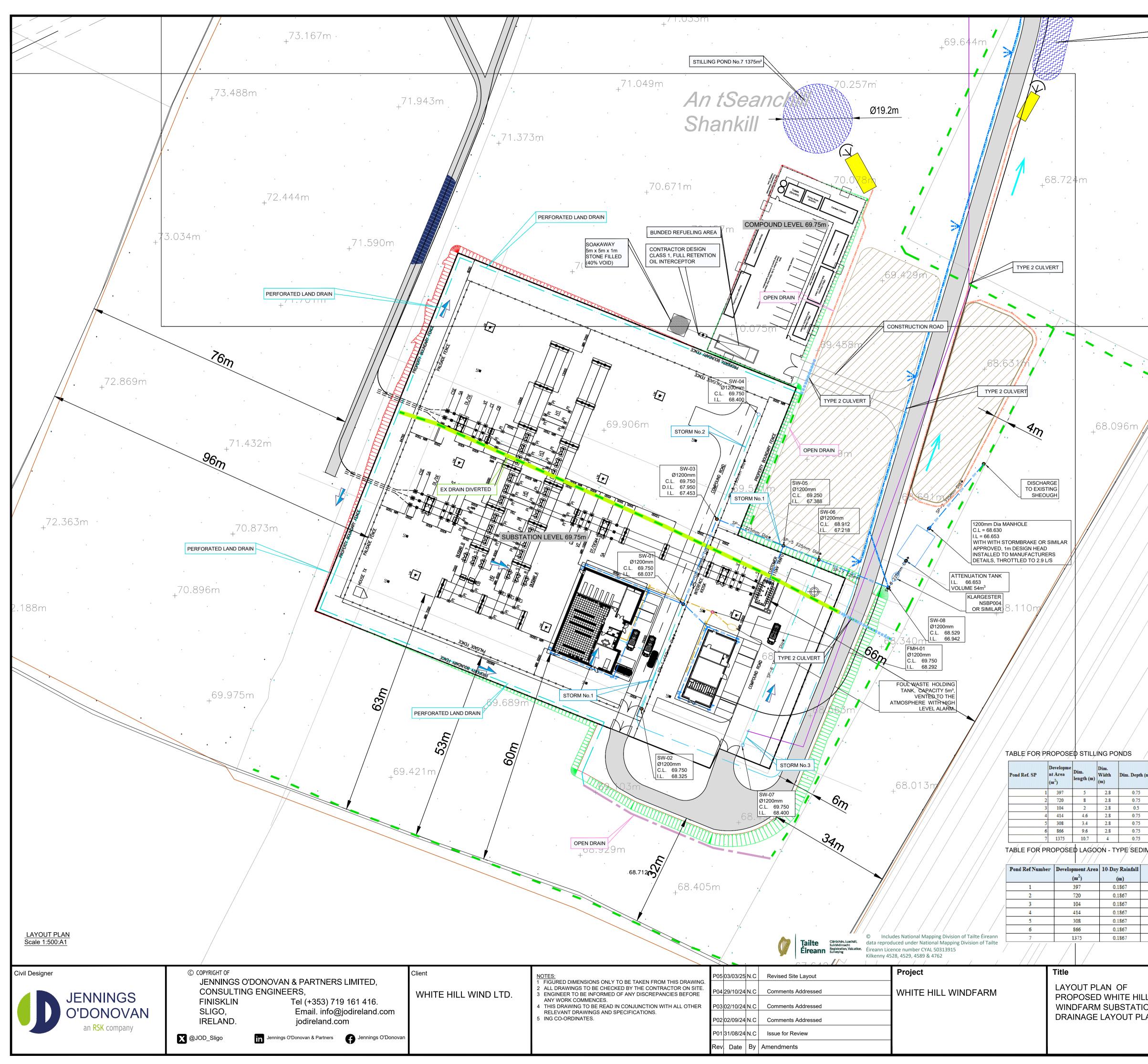






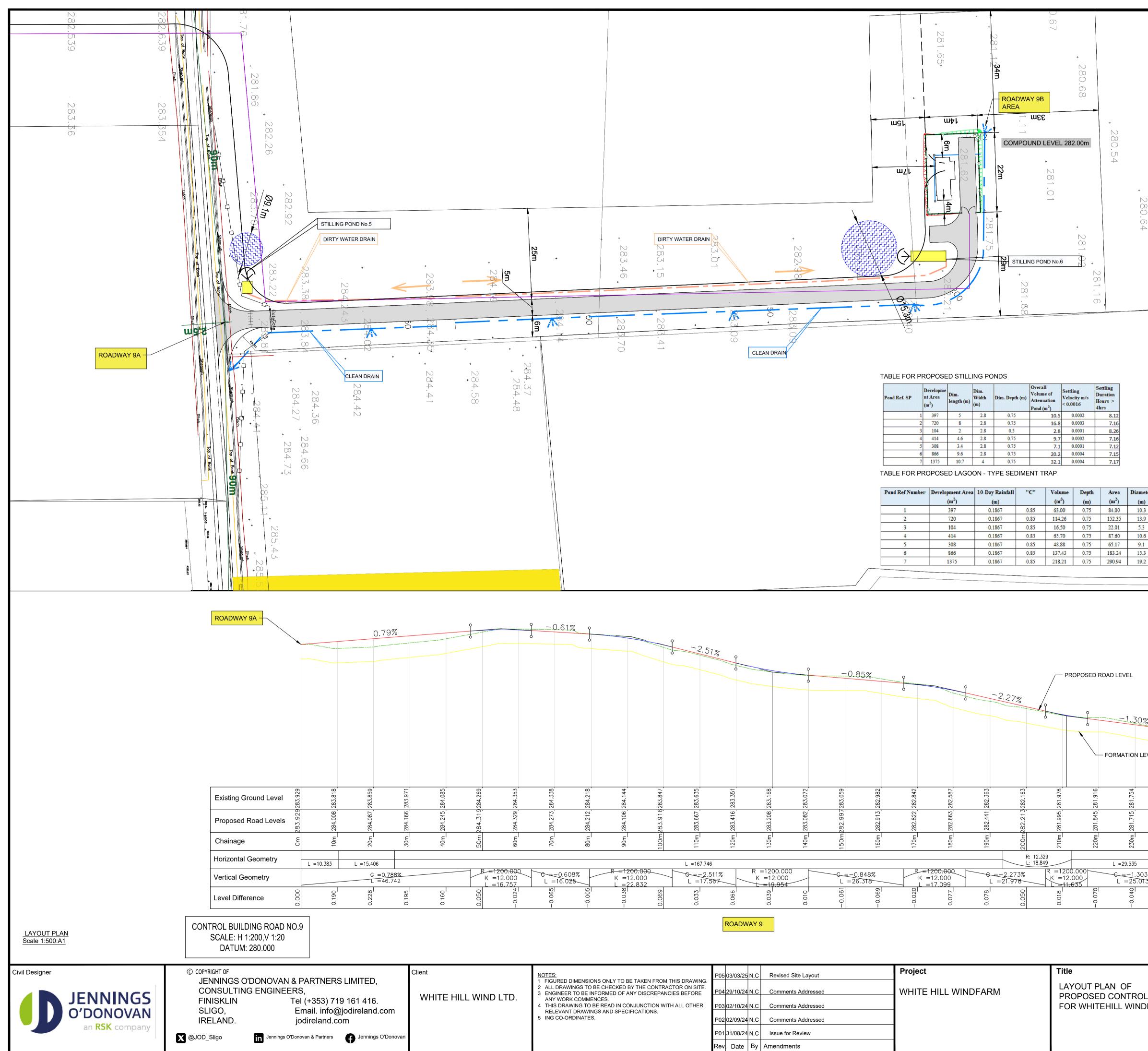

## TABLE FOR PROPOSED STILLING PONDS

| opme<br>ea | Dim.<br>length (m) | Dim.<br>Width<br>(m) | Dim. Depth (m) | Overall<br>Volume of<br>Attenuation<br>Pond (m <sup>3</sup> ) | Settling<br>Velocity m/s<br>< 0.0016 | Settling<br>Duration<br>Hours ><br>4hrs |
|------------|--------------------|----------------------|----------------|---------------------------------------------------------------|--------------------------------------|-----------------------------------------|
| 7          | 5                  | 2.8                  | 0.75           | 10.5                                                          | 0.0002                               | 8.12                                    |
| 20         | 8                  | 2.8                  | 0.75           | 16.8                                                          | 0.0003                               | 7.16                                    |
| )4         | 2                  | 2.8                  | 0.5            | 2.8                                                           | 0.0001                               | 8.26                                    |
| 4          | 4.6                | 2.8                  | 0.75           | 9.7                                                           | 0.0002                               | 7.16                                    |
| 8          | 3.4                | 2.8                  | 0.75           | 7.1                                                           | 0.0001                               | 7.12                                    |
| i6         | 9.6                | 2.8                  | 0.75           | 20.2                                                          | 0.0004                               | 7.15                                    |
| 75         | 10.7               | 4                    | 0.75           | 32.1                                                          | 0.0004                               | 7.17                                    |


TABLE FOR PROPOSED LAGOON - TYPE SEDIMENT TRAP

| evelopment Area   | 10-Day Rainfall | "C"  | Volume            | Depth | Area              | Diameter |
|-------------------|-----------------|------|-------------------|-------|-------------------|----------|
| (m <sup>2</sup> ) | (m)             |      | (m <sup>3</sup> ) | (m)   | (m <sup>2</sup> ) | (m)      |
| 397               | 0.1867          | 0.85 | 63.00             | 0.75  | 84.00             | 10.3     |
| 720               | 0.1867          | 0.85 | 114.26            | 0.75  | 152.35            | 13.9     |
| 104               | 0.1867          | 0.85 | 16.50             | 0.75  | 22.01             | 5.3      |
| 414               | 0.1867          | 0.85 | 65.70             | 0.75  | 87.60             | 10.6     |
| 308               | 0.1867          | 0.85 | 48.88             | 0.75  | 65.17             | 9.1      |
| 866               | 0.1867          | 0.85 | 137.43            | 0.75  | 183.24            | 15.3     |
| 1375              | 0.1867          | 0.85 | 218.21            | 0.75  | 290.94            | 19.2     |




- SEE DRAWING 6607-JOD-SS-ZZ-DR-C-1001 LAYOUT PLAN 6607-JOD-SS-ZZ-DR-C-1002 CROSS SECTION 6607-JOD-SS-ZZ-DR-C-1003 CUT AND FILL 6607-JOD-SS-ZZ-DR-C-1004 CONTROL BUILDING LAYOUT PLAN 6607-JOD-SS-ZZ-DR-C-1005 FOR ROAD LAYOUT PLAN 6607-JOD-SS-ZZ-DR-C-1006 FOR ROAD SECTIONS 6607-JOD-SS-ZZ-DR-C-1007 FOR ROAD WIDENING 6607-JOD-SS-ZZ-DR-C-1010 FOR DRAINAGE OVERALL LAYOUT PLAN
- 6607-JOD-SS-ZZ-DR-C-1011 FOR DRAINAGE LAYOUT PLAN 6607-JOD-SS-ZZ-DR-C-1012 FOR DRAINAGE SECTIONS
- 6607-JOD-SS-ZZ-DR-C-1020 FOR COMPOUND LAYOUT PLAN 6607-JOD-SS-ZZ-DR-C-1051 to 1054 FOR DRAINAGE DETAILS

| HILL<br>ATION<br>_L LAYOUT PLAN | Issue Details        |     |              |   | Office Use Only                             |      |  |
|---------------------------------|----------------------|-----|--------------|---|---------------------------------------------|------|--|
|                                 | Designed: N.(        | С   | Information  |   | Drawing Number:<br>6607-JOD-SS-ZZ-DR-C-1010 |      |  |
|                                 | Drawn: N.(           | С   | Approval     | Х |                                             |      |  |
|                                 | Checked: J.M         | cE  | Tender       |   |                                             |      |  |
|                                 | Approved: J.N        | ИсЕ | Construction |   | Date:                                       | Rev. |  |
|                                 | Scale: AS SHOWN (A1) |     | Record       |   | AUG 2024                                    | P05  |  |



|                                 |                                           | *                         |                      |                                                                                             |                                             |
|---------------------------------|-------------------------------------------|---------------------------|----------------------|---------------------------------------------------------------------------------------------|---------------------------------------------|
|                                 | +                                         |                           |                      |                                                                                             |                                             |
| STILLING POND N                 | o.2 720m <sup>2</sup>                     |                           |                      | · /// / /                                                                                   |                                             |
|                                 | +                                         | +                         |                      | /// / / T                                                                                   | $\mathbf{V}$                                |
|                                 | * *                                       |                           |                      |                                                                                             |                                             |
| +                               |                                           |                           |                      |                                                                                             |                                             |
|                                 | +                                         |                           | ,                    |                                                                                             |                                             |
| _67.8 <sup>0</sup> 6n           | n.                                        |                           |                      |                                                                                             |                                             |
|                                 |                                           |                           | ,                    | X        /                                                                                  |                                             |
|                                 | •                                         |                           |                      |                                                                                             |                                             |
|                                 |                                           |                           |                      |                                                                                             |                                             |
| +                               | +                                         |                           |                      |                                                                                             |                                             |
| •                               | •                                         |                           |                      |                                                                                             |                                             |
| •                               |                                           |                           | / /                  |                                                                                             |                                             |
| *                               | +67.522                                   | m////                     |                      |                                                                                             |                                             |
| *                               | +                                         |                           |                      |                                                                                             |                                             |
| •                               |                                           |                           |                      |                                                                                             |                                             |
| *                               |                                           |                           |                      |                                                                                             |                                             |
| *                               | · ////                                    |                           |                      |                                                                                             |                                             |
|                                 |                                           |                           |                      |                                                                                             |                                             |
|                                 |                                           |                           | / ,                  | X / / /                                                                                     |                                             |
| . +67                           | ./pg//////                                |                           |                      |                                                                                             |                                             |
| · /                             |                                           |                           | /                    |                                                                                             |                                             |
|                                 |                                           |                           |                      |                                                                                             |                                             |
|                                 |                                           |                           | /                    |                                                                                             |                                             |
|                                 |                                           |                           |                      |                                                                                             |                                             |
| · ////                          |                                           |                           | /                    |                                                                                             |                                             |
|                                 |                                           |                           | /                    |                                                                                             | /                                           |
|                                 |                                           |                           |                      |                                                                                             |                                             |
|                                 |                                           | SEE DRAV<br>6607-JOD-     |                      | DR-C-1001 LAYOUT PLAN                                                                       |                                             |
|                                 |                                           | 6607-JOD-<br>6607-JOD-    | -SS-ZZ-I<br>-SS-ZZ-I | DR-C-1002 CROSS SECTION<br>DR-C-1003 CUT AND FILL                                           |                                             |
|                                 |                                           | 6607-JOD-                 | -SS-ZZ-I             | DR-C-1004 CONTROL BUILDING LAY<br>DR-C-1005 FOR ROAD LAYOUT PLAI                            |                                             |
|                                 |                                           | 6607-JOD-                 | -SS-ZZ-I             | DR-C-1006 FOR ROAD SECTIONS<br>DR-C-1007 FOR ROAD WIDENING<br>DR-C-1010 FOR DRAINAGE OVERAL | L LAYOUT PLAN                               |
|                                 |                                           | 6607-JOD-<br>6607-JOD-    | -SS-ZZ-I<br>-SS-ZZ-I | DR-C-1011 FOR DRAINAGE LAYOUT<br>DR-C-1012 FOR DRAINAGE SECTION                             | PLAN<br>NS                                  |
|                                 |                                           |                           |                      | DR-C-1020 FOR COMPOUND LAYOU<br>DR-C-1051 to 1054 FOR DRAINAGE D                            |                                             |
|                                 |                                           |                           |                      |                                                                                             |                                             |
|                                 |                                           | NOTES<br>1. FIGURE        | ED DIM               | ENSIONS ONLY TO BE TAKEN FE                                                                 | ROM THIS DRAWING.                           |
|                                 |                                           | 2. ALL D<br>3. ENGINE     | ŔAWING<br>EER TØ     | S TO BE CHECKED BY THE CO<br>BE INFORMED OF ANY DISCREP<br>OMMENCES.                        | NTRACTOR ON SITE.                           |
|                                 |                                           |                           |                      | F-No.                                                                                       | er Level                                    |
|                                 |                                           |                           | /                    | FOUL MANHOLE                                                                                |                                             |
|                                 |                                           |                           |                      | øxxmm@1:xx                                                                                  |                                             |
|                                 |                                           |                           |                      | STORM SEWER                                                                                 | w                                           |
|                                 |                                           | PROPO                     |                      | STORM MANHOLE STORM MANHOLE                                                                 |                                             |
|                                 |                                           |                           |                      | AIL FENCE                                                                                   |                                             |
|                                 |                                           |                           |                      |                                                                                             |                                             |
|                                 |                                           |                           |                      |                                                                                             | /                                           |
|                                 |                                           | SHEOU                     | igh Di               | VERTED                                                                                      | <b></b> /                                   |
|                                 |                                           | PROPC                     | )SED (               | DPEN DRAIN                                                                                  | /                                           |
|                                 |                                           |                           |                      | RFORATED LAND                                                                               | 150mm Dia→                                  |
|                                 |                                           |                           |                      | PED IN                                                                                      |                                             |
|                                 |                                           |                           |                      | Г                                                                                           | <u> </u>                                    |
|                                 |                                           | CUT N                     | IATERIA              |                                                                                             |                                             |
|                                 |                                           |                           |                      |                                                                                             |                                             |
| Overall<br>Volume of Velo       | ing<br>City m/s                           |                           |                      | ΥŤ                                                                                          | YYY'Y                                       |
| Pond (m <sup>3</sup> ) < 0.0    | 0016 Hours ><br>4hrs                      | FILL M                    | IATERI <i>A</i>      | AL                                                                                          |                                             |
| 5 10.5                          | 0.0002 8.12<br>0.0003 7.16                |                           |                      | $\Box$                                                                                      |                                             |
| 5 2.8                           | 0.0001 8.26<br>0.0002 7.16                |                           |                      |                                                                                             |                                             |
| 5 7.1                           | 0.0002 7.16<br>0.0001 7.12<br>0.0004 7.15 | FLOATE                    | LU RO                |                                                                                             |                                             |
| 5 32.1                          | 0.0004 7.15                               | PROPC                     | )SED (               | CLEAN WATER DRAINAGE                                                                        | and from from from from from from           |
| DIMENT TRAP                     |                                           |                           |                      |                                                                                             |                                             |
| l "C" Volume                    | •                                         | Diameter                  |                      | DIRTY WATER DRAINAGE                                                                        | and family and family and family and family |
| (m <sup>3</sup> )<br>0.85 63.00 | (m) (m <sup>2</sup> )<br>0.75 84.00       | (m) STILLIN<br>10.3 & FLC | NG PO<br>NW DIR      | ND NUMBER, CATCHMENT AR<br>Ection                                                           |                                             |
| 0.85 114.26                     | 0.75 152.35                               | 13.9                      |                      |                                                                                             | ?m-                                         |
| 0.85 16.50<br>0.85 65.70        | 0.75 22.01<br>0.75 87.60                  | 5.3 PROPOS<br>10.6        | ED CUL               | VERT TO EXISTING OPEN DRAIN                                                                 |                                             |
| 0.85 48.88<br>0.85 137.43       | 0.75 65.17<br>0.75 183.24                 | 9.1<br>15.3 SPOIL D       | )EPOSITI             | ON AREA                                                                                     |                                             |
| 0.85 137.43<br>0.85 218.21      | 0.75 183.24<br>0.75 290.94                | 19.2                      |                      |                                                                                             |                                             |
|                                 |                                           | PROPOS                    | ED LAG               | DON – TYPE SEDIMENT TRAP                                                                    | (22222222)                                  |
|                                 |                                           | <u></u>                   |                      | Office Use Only                                                                             |                                             |
|                                 | Issue Details                             | Internet i                |                      | Office Use Only Drawing Number:                                                             |                                             |
| IILL                            | Designed: N.C                             | Information               |                      |                                                                                             |                                             |
| ΓΙΟΝ                            | Drawn: N.C                                | Approval                  | X                    | 6607-JOD-SS-ZZ-                                                                             | UK-C-1011                                   |
| PLAN                            | Checked: J.McE                            | Tender                    |                      | Data:                                                                                       | Boy                                         |
|                                 | Approved: J.McE                           | Construction              |                      | Date:<br>AUG 2024                                                                           | Rev.<br>P05                                 |
|                                 |                                           | Desard                    | 1                    | 100 2024                                                                                    |                                             |

Scale: AS SHOWN (A1) Record



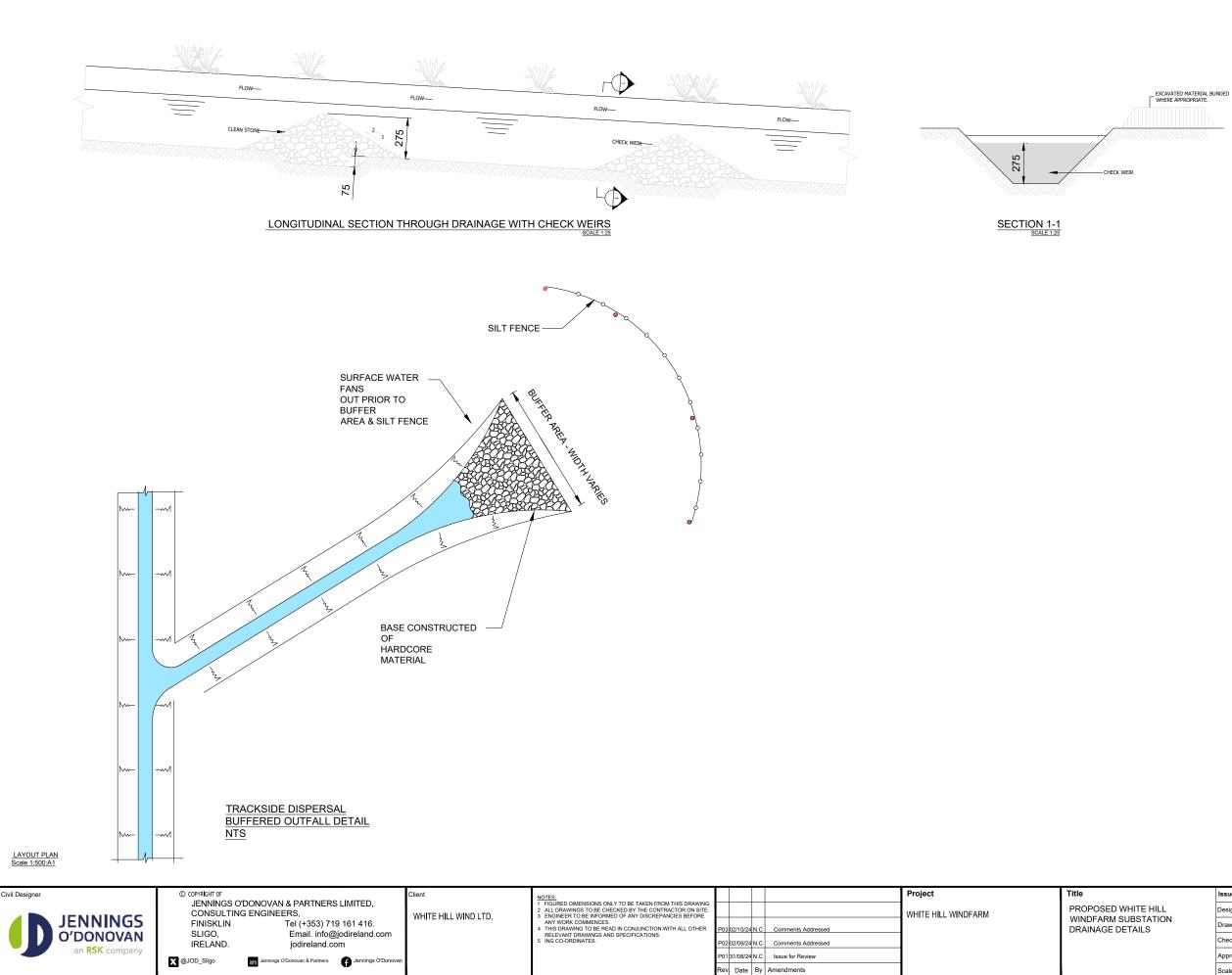
| Pond Ref. SP | Developme<br>nt Area<br>(m <sup>2</sup> ) | Dim.<br>length (m) | Dim.<br>Width<br>(m) | Dim. Depth (m) | Overall<br>Volume of<br>Attenuation<br>Pond (m <sup>3</sup> ) | Settling<br>Velocity m/s<br>< 0.0016 | Settling<br>Duration<br>Hours ><br>4hrs |
|--------------|-------------------------------------------|--------------------|----------------------|----------------|---------------------------------------------------------------|--------------------------------------|-----------------------------------------|
| 1            | 397                                       | 5                  | 2.8                  | 0.75           | 10.5                                                          | 0.0002                               | 8.12                                    |
| 2            | 720                                       | 8                  | 2.8                  | 0.75           | 16.8                                                          | 0.0003                               | 7.16                                    |
| 3            | 104                                       | 2                  | 2.8                  | 0.5            | 2.8                                                           | 0.0001                               | 8.26                                    |
| 4            | 414                                       | 4.6                | 2.8                  | 0.75           | 9.7                                                           | 0.0002                               | 7.16                                    |
| 5            | 308                                       | 3.4                | 2.8                  | 0.75           | 7.1                                                           | 0.0001                               | 7.12                                    |
| 6            | 866                                       | 9.6                | 2.8                  | 0.75           | 20.2                                                          | 0.0004                               | 7.15                                    |
| 7            | 1375                                      | 10.7               | 4                    | 0.75           | 32.1                                                          | 0.0004                               | 7 17                                    |

| Pond Ref Number | <b>Development Area</b> | 10-Day Rainfall | "C"  | Volume            | Depth | Area              | Diam |
|-----------------|-------------------------|-----------------|------|-------------------|-------|-------------------|------|
|                 | (m <sup>2</sup> )       | (m)             |      | (m <sup>3</sup> ) | (m)   | (m <sup>2</sup> ) | (n   |
| 1               | 397                     | 0.1867          | 0.85 | 63.00             | 0.75  | 84.00             | 10   |
| 2               | 720                     | 0.1867          | 0.85 | 114.26            | 0.75  | 152.35            | 13   |
| 3               | 104                     | 0.1867          | 0.85 | 16.50             | 0.75  | 22.01             | 5.   |
| 4               | 414                     | 0.1867          | 0.85 | 65.70             | 0.75  | 87.60             | 10   |
| 5               | 308                     | 0.1867          | 0.85 | 48.88             | 0.75  | 65.17             | 9.   |
| 6               | 866                     | 0.1867          | 0.85 | 137.43            | 0.75  | 183.24            | 15   |
| 7               | 1375                    | 0.1867          | 0.85 | 218.21            | 0.75  | 290.94            | 19   |

|                                                                                                                                                      | P05 | 03/03/25 | N.C | Revised Site Layout | Project             | Title                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------|-----|---------------------|---------------------|-----------------------------------|
| D DIMENSIONS ONLY TO BE TAKEN FROM THIS DRAWING.<br>AWINGS TO BE CHECKED BY THE CONTRACTOR ON SITE.<br>ER TO BE INFORMED OF ANY DISCREPANCIES BEFORE | P04 | 29/10/24 | N.C | Comments Addressed  | WHITE HILL WINDFARM | LAYOUT PLAN OF<br>PROPOSED CONTRO |
| ORK COMMENCES.<br>RAWING TO BE READ IN CONJUNCTION WITH ALL OTHER<br>ANT DRAWINGS AND SPECIFICATIONS.                                                | P03 | 02/10/24 | N.C | Comments Addressed  |                     | FOR WHITEHILL WIND                |
| -ORDINATES.                                                                                                                                          | P02 | 02/09/24 | N.C | Comments Addressed  |                     |                                   |
|                                                                                                                                                      | P01 | 31/08/24 | N.C | Issue for Review    |                     |                                   |
|                                                                                                                                                      | Rev | Date     | By  | Amendments          |                     |                                   |

| * 280.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | • <u>280.05</u>                               | · 279.98                                                                                                                                                                                                                                                                          |                                                               | * 279.91                              | · 279.38 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------|----------|
| · 280.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                               | · 280.26                                                                                                                                                                                                                                                                          |                                                               | *                                     | N        |
| 280.64 * 280.78 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | • 280.56<br>• 280.7                           | LEGEND:<br>PALISADE FENCE<br>POST AND RAIL FEN<br>SHEOUGH EXISTING<br>SHEOUGH DIVERTED<br>PROPOSED OPEN D<br>0150mm PERFORAT<br>DRAIN WRAPPED IN<br>NON-WOVEN GEOTE<br>CUT MATERIAL<br>FILL MATERIAL<br>FLOATED ROAD<br>PROPOSED CLEAN W<br>STILLING POND NUM<br>& FLOW DIRECTION | NCE<br>PRAIN<br>TED LAND<br>TED LAND<br>TED LAND<br>TED LAYER | P P P P P P P P P P P P P P P P P P P | · •      |
| neter<br>m)<br>0.3<br>3.9<br>i.3<br>0.6<br>0.1<br>5.3<br>9.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                               | PROPOSED CULVERT TO<br>SPOIL DEPOSITION AREA<br>PROPOSED LAGOON - T                                                                                                                                                                                                               |                                                               | RAIN                                  |          |
| 0.010<br>242m281.5560281.560281.560<br>242m281.560281.560<br>242m281.560281.560<br>242m281.560281.560<br>242m281.560281.560<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.580<br>282.5 | OADWAY 9B                                     |                                                                                                                                                                                                                                                                                   |                                                               |                                       |          |
| DL BUILDING<br>DFARM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Designed: N.C<br>Drawn: N.C<br>Checked: J.McE | Information<br>Approval<br>Tender                                                                                                                                                                                                                                                 | Office Use<br>Drawing<br>X 6607                               |                                       | -1004    |

Date:


JULY 2024

Approved: J.McE Construction

Scale: AS SHOWN (A1) Record

Rev.

P05



## DRAINAGE NOTES

CONSTRUCTION AND MAINTENANCE ROADSIDE DRAIN SHOULD NOT INTERCEPT LARGE VOLUMES OF WATER FROM THE GROUND ABOVE. ROADSIDE DRAINS LIKELY TO CARRY HIGH SEDMENT LOADS AND MUST DISCHARGE INTO A BUFFER OF A DEOUATE WIDTH. DT THE LOWER SIDE OF THE ROAD MAY NEED CULVERTS TO FUE LOWER SIDE OF THE ROAD MAY NEED CULVERTS REGULAR INSPECTIONS. CLEANING AND REPAIRS WHERE NECESSARY.

- DRAINS

   DRAINS SHALL BE DESIGNED AND CONSTRUCTED TO MITIGATE CHANNEL EROSION, E.G. BY INSTALLATION OF PERFORATED PIPE WITH DRAINES ESTONE SUPROVIDIO.

   DIVERTED RUNOFF FROM A DISTURBED AREA SHALL BE CONVEYED TO A SYSTEM OF STILLING PONDS AND BUFFERED OUTFALLS.

   DIVERTED RUNOFF FROM AN UNDISTURBED AREA SHALL BE CONVEYED THROUGH A BUFFERED OUTFALL WITHIN AN UNDISTURBED STABILISED OREA SHALL BE CONVEYED THROUGH A BUFFERED OUTFALL WITHIN AN UNDISTURBED STABILISED OF SO AS NOT ON INTERFORE WITH THE PROPER FUNCTION OF THE DRAINAGE CHANNEL SHALL BE CONVEYED THROUGH A BUFFERED OUTFALL WITHIN AN UNDISTURBED SHALL BE CONSTRUCTED USING WELL GRADED 150mm DOWN ANGULAR GRAVEL PLACED OVER A GEO-TEXTLE LIVER. SEE DETAIL 1.

   THE SPACING OF CHECK DAMS SHALL BE SUCH THAT THE PEAK OF THE DOWNS OF CHECK DAMS SHALL BE SUCH THAT THE FEAK OF THE DOWNS OF CHECK DAMS SHALL BE SUCH THAT THE FOOT OF THE FROME DAM.

   THE USE OF STRAW BALES WITHIN THE DRAINAGE AREAS OF DISTURBED SHOLL ON A TEMPORARY PASIS DURING CONSTRUCTION AND MAINTENANCE WORK.

   STRAW BALES SHOULD IN DRIVEYER, ONLY BE USED TO INTERCEPT SEDIMENT-LADER NEUNOFF FROM ALL DRAINAGE AREAS OF DISTURBED SOL.

   BALES SHOULD DE ANCHORED IN PLACE BY THE USE OF TIMBER STAKES OR RE-BARS DRIVEY THROUGH THE BALE. WHERE BALES ARE TO BE PLACED IN POSITION ADJACENT TO OTHER BALES (EG WITHIN AS THLE EFFECT OF FORCING THE TWO BALES STOULD BE RE-BARS DRIVE TO FOR THE WIDE DAILES ARE TO BE PLACED IN POSITION ADJACENT TO OTHER BALES (EG WITHIN AS THLE EFFECT OF FORCING THE TWO BALES TOGETHER.

   BALES SHALL BE REMOVED WHEN THEY HAVE SERVED THEIR USEFULNESS.
- AUTFALLS: ALL DRAINAGE CHANNELS SHALL FANTAPER OUT BEFORE ENTERING THE BUFFER ZONE. PRIOR TO ENTERING THE TAPERED ZONE, THE BASE OF THE DRAINAGE CHANNELS TO BE CONSTRUCTED OF A HARDOORE MATERIAL TO AD THE SETTLEMENT OF SUSPENDED SOLIDS. NON-DEVELOPMENT RUN-OFF SHALL BE RETURNED TO A SURFACE FLOW CONDITION E.G. BY USE OF LEVEL SPREADERS.

| TION | Issue Details        |              |   | Office Use Only                             |             |  |  |
|------|----------------------|--------------|---|---------------------------------------------|-------------|--|--|
|      | Designed: N.C        | Information  |   | Drawing Number:<br>6607-JOD-SS-ZZ-DR-C-1051 |             |  |  |
|      | Drawn: N.C           | Approval     | Х |                                             |             |  |  |
|      | Checked: J.McE       | Tender       |   |                                             |             |  |  |
|      | Approved: J.McE      | Construction |   | Date:                                       | Rev.<br>P03 |  |  |
|      | Scale: AS SHOWN (A1) | Record       |   | AUG 2024                                    | P03         |  |  |

